2081HS2F2045

DocumentID

NONCD0002814

Site Name

HANCOCK COUNTRY HAMS

DocumentType

Site Assessment Rpt (SAR)

RptSegment

1

DocDate

2/13/2008

DocRcvd

2/13/2008

Вох

2F2045

AccessLevel

PUBLIC

Division

WASTE MANAGEMENT

Section

SUPERFUND

Program

IHS (IHS)

DocCat

FACILITY

-

Groundwater and Soil Sampling Report
Hancock Country Hams
3484 NC Highway 22 North
Franklinville, Randolph County, North Carolina
Incident No. 3700
Trigon Project No. 042-07-117

ENGINEERING CONSULTANTS, INC.

Since - 1983

www.trigoneng.com

P.O. Box 18846 • Zip 27419-8846 • 313 Gallimore Dairy Road • Greensboro, NC 27109 •

Senior Project Geologist

FEB 1 5 2008

February 13, 2008

Mr. Ruth Debrito Smithfield Foods, Inc. 601 North Church Street Smithfield, Virginia 23430

Reference:

Groundwater and Soil Sampling Report

Hancock Country Hams 3484 NC Highway 22 North Franklinville, North Carolina Trigon Project No. 042-07-117

Dear Ms. Debrito:

Trigon Engineering Consultants, Inc. (Trigon) is pleased to present our report of the soil, surface water, and groundwater sampling which took place at the referenced location.

Copies of this report have been forwarded to Mr. Stephen Williams and Mr. Colin Day of the North Carolina Department of Environment and Natural Resources (NCDENR), Mr. George House, and Mr. Stanford Baird. Trigon appreciates the opportunity to be of service to Smithfield Foods Inc. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Very truly yours,

TRIGON ENGINEERING CONSULTANTS, INC.

hn C. Lindemann /Ghe

John C. Lindemann

Project Manager

JCL/CDN:cas

Cc: Mr. Stanford Baird

Mr. George House

Mr. Stephen Williams

Mr. John Walch

Attachments

h:\0420\projects\2007\117\r4207117-gw&s.doc

HANCOCK COUNTRY HAMS GROUNDWATER AND SOIL SAMPLING REPORT

Site Name and Location

Hancock Country Hams 3484 NC Highway 22 North Franklinville, North Carolina

Latitude and Longitude:

35° 46' 49" North; 79° 41' 40" West

Incident Number:

3700

Risk Classification/Reason:

High

- (1) A water supply well used for drinking water is located within 1,000 feet of the source area of a confirmed discharge or release.
- (2) The groundwater within 500 feet of the source area of a confirmed discharge or release has the potential for future use in that there is no source of water supply other than the groundwater.

Land Use Category:

Commercial/Residential

UST Owners and Responsible Parties:

1. Gwaltney of Smithfield Ltd. 601 North Church Street Smithfield, Virginia 23430

(757) 356-3131

Attn. Mr. Rob Bogaard, Vice President of Operations

2. Lance, Inc.

Post Office Box 32368

Charlotte, North Carolina 28232

(704) 554-1421

3. Ms. Julia Hancock 3456 NC Hwy. 22 N. Franklinville, NC 27248

Current Land Owner:

Gwaltney of Smithfield Ltd. 601 North Church Street Smithfield, Virginia 23430

(757) 356-3131

Attn. Mr. Rob Bogaard, Vice President of Operations

Consultant:

Trigon Engineering Consultants, Inc. 6200 Harris Technology Boulevard Charlotte, North Carolina 28269 Attn.: Mr. Craig D. Neil, P.G.

Phone: (704) 598-1049

Release Information:

Date Discovered:

October 1988

Cause of Release:

USTs in Pit B UST(s) Size (gal) and Content:

1) 1,000 - Gasoline - Pit A

2) 3,000 - Gasoline - Pit B

3) 3,000 - Gasoline - Pit B

4) 1,500 - Gasoline - Pit C

Source of Release:

UST System (Pit B)

Release Amount:

Unknown

Date of Report:

February 13, 2008

Seal and Signature of Certific Accided Geologist

TABLE OF CONTENTS

LU BA	CKURUUN	D	J
2.0 PUI	RPOSE		3
3.0 RE	CEPTORS		3
		LING	
		NG AND RECOVERY WELL SAMPLING	
		ELL SAMPLING	
		AMPLING	
4.5	FIELD MEA	SUREMENTS	5
			·
		LES	
		NG WELLS	
		WELLS	
		PPLY WELLS	
		AMPLES	
5.6	GROUNDW	ATER FLOW DIRECTION	7
5.7	PLUME GE	OMETRY	7
6.0 CC	DNCLUSION	18	8
			_
7.0 RE	ECOMMENI	DATIONS	9
TABL	ES		
	Table 1	Properties Within 1,500 Feet of the Site with Water Wells	
	Table 2	Adjacent Property Owners	
	Table 3	Soil Sample Results: Chloride	
	Table 4	Groundwater Sample Results: January 24, 2008	
	Table 5	Historical Piezometer, Monitoring, and Recovery Well Sample Results	
	Table 6	Historical Water Well Sample Results	
	Table 7	Historical Surface Water Sample Results	
	Table 8	Summary of Monitoring Well and Groundwater Elevation Data	
		•	

FIGURES

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Water Supply Wells within 1,500 Feet of the Site
Figure 4	Topographic Relationship of Water Wells to the Site
Figure 5	Soil Chloride Concentrations – 1990
Figure 6	Soil Chloride Concentrations – 2008
Figure 7	Concentrations of Benzene vs. Time in RW-3
Figure 8	Concentrations of Benzene vs. Time in RW-6
Figure 9	Concentrations of Benzene, Ethylbenzene, Toluene, and Xylenes vs. Time in RW-7
Figure 10	Concentrations of Benzene vs. Time in the South Well (SW)
Figure 11	Concentrations of Benzene vs. Time in the Ed Rhodes Well (ERW)
Figure 12	Concentrations of Benzene vs. Time in the J. Hancock Well (6)
Figure 13	Groundwater Flow Map (January 2008)
Figure 14	Chloride Isoconcentration Map (January 2008)
Figure 15	Benzene Isoconcentration Map (January 2008)
Figure 16	Ethylbenzene Isoconcentration Map (January 2008)
Figure 17	Toluene Isoconcentration Map (January 2008)
Figure 18	Xylenes Isoconcentration Map (January 2008)

APPENDICES

Appendix A NCDENR CAP Approval Letter Appendix B Field Data Sampling Sheets Appendix C Laboratory Reports

1.0 BACKGROUND

The site is located on the east side of the NC Hwy 22 approximately three miles south of Grays Chapel, Randolph County, North Carolina (Figure 1). The site is located in a rural, mostly undeveloped, area. The majority of the houses in the area are located along NC Hwy 22, north and south of the site, and along Cedar Forest Road, located approximately a 1/3 mile south of the site.

Westinghouse Environmental Services reported that four USTs were installed at the site in 1971. The tanks consisted of one-1,000 gallon gasoline UST, two-3,000 gallon gasoline USTs (nested together), and one-1,500 gallon gasoline UST. The UST locations are shown in Figure 2. All of the USTs were reportedly removed in 1986. Limited soil analysis data was collected from the UST excavations. Russnow, Kane, and Andrews collected samples from the South Well (SW), Ed Rhodes well (ERW), and the block house well (BHW) in May/June 1988. Contaminants associated with petroleum and chlorides were detected in the groundwater samples. The chloride in the groundwater is believed to be from the ham curing facility which operated at the site from the mid 1950's to the mid 1970's.

In May 1989, Westinghouse Environmental Services (WES) submitted an Initial Site Assessment of the site. This assessment included the drilling of numerous soil test borings, drilling and installation of two monitoring wells and three piezometers, stream sampling, and associated sampling and analyses in the fall of 1988. The site assessment determined the location of contaminated soil and began to determine the extent of groundwater contamination. The assessment confirmed that petroleum and chloride contamination was present in the bedrock aquifer. Chlorides below the State's water quality standards (NCAC 2B) have been detected in the creek east of the site. Because of the large distance to the creek (1,000 feet), Trigon believes the petroleum compounds are degrading/attenuating before they reach the creek. Also during the assessment, WES removed and treated approximately 700 cubic yards of petroleum contaminated soil from the UST Pit B area.

In early 1991, Charles T. Main (CTM) was contracted to develop a remedial action plan (RAP). Their plan was submitted to the then North Carolina Department of Environment, Health, and Natural Resources (NC DEHNR) Groundwater Section Regional Office in Winston-Salem, North Carolina on April 17, 1991. The NC DEHNR is currently the Department of Environment and Natural Resources (DENR) and will be referred to in that way in this report. The NCDENR requested additional information and a supplemental RAP was submitted to the NCDENR on September 27, 1991. Both RAPs proposed

using a pump and treat system to remediate the groundwater. The groundwater was to be pumped from seven recovery wells, treated, and discharged under an Individual NPDES permit. CTM recommended that the chloride contaminated soil be allowed to naturally remediate over time. Because of difficulties in obtaining access to discharge the effluent, in 1996, Smithfield Foods requested that the NCDENR allow the groundwater and soil be remediated through a process of natural attenuation. Following this request, on August 26, 1996, the NCDENR requested additional assessment of the site. In March 1998, a Groundwater Monitoring Report with updated sampling data was sent to the NCDENR. Upon review of the monitoring report, on May 20, 1998 the NCDENR requested additional investigation of the bedrock aquifer. A follow-up report was issued on August 23, 1999.

On October 11, 2002, the NCDENR sent our client a Notice of Regulatory Requirements requiring the submittal of a corrective action plan (CAP) to treat the petroleum contaminated soil and groundwater. Because chloride contaminated groundwater is commingled with the petroleum contamination, the CAP addressed both contaminants. On December 20, 2002 the CAP was submitted to NCDENR. The cap called for additional soil sampling in the UST B area, with excavation and disposal of any remaining contaminated soil. Groundwater contamination would be addressed with a pump and treat system incorporating an air stripper to treat the petroleum contamination and a reverse osmosis (RO) system to deal with elevated chloride concentrations. The December 2002 CAP was developed under tight time constraints and was, thus, based on the data from the 1999 sampling events. The CAP called for a new round of sampling and re-evaluation of the CAP requirements based on the analytical results.

Groundwater sampling of the recovery wells, monitoring wells, water wells and stream, and soil sampling of the UST B pit area and the salt disposal area was conducted on June 12 and 13, 2003. The results of the sampling was reported to NCDENR in an October 3, 2003 Groundwater and Soil Sampling Report. On July 30, 2003 a meeting was held at the site between our client, Mr. Stephen Williams of NCDENR and Trigon. Based on the preliminary June 2003 sampling results and a review of the site conditions, NCDENR agreed to consider modifying the December 2002 CAP to allow remediation of remaining contamination at the site by monitored natural attenuation. The modified conditions were to be allowed only if continued monitoring indicated that the contaminant plume was stable or improving. Groundwater sampling of the recovery wells, monitoring wells, water wells and the stream conducted on October 8, 2003 confirmed that both the BTEX and chloride plumes were stable and that natural attenuation of petroleum and chloride contamination in the groundwater may be occurring.

Following a review of the groundwater sampling data from the October 2003 sampling event, on November 20, 2003 the NCDENR approved our client's request to modify the December 2002 CAP to provide for natural attenuation. On February 3, 2004, Trigon submitted a CAP to modify the December 2002 CAP, which will allow the existing petroleum and chloride contaminants in the site soil and groundwater to naturally attenuate. The February 3, 2004 natural attenuation CAP was approved by the NCDENR on March 16, 2004. A copy of the approval letter is included in Appendix A.

2.0 PURPOSE

The February 2004 modified CAP recommended quarterly sampling of the stream, recovery and monitoring wells and nearby water wells to monitor the size and shape of the petroleum hydrocarbon plume and annual monitoring of the soil in the brine disposal area on an annual basis.

On January 24, 2008, groundwater and surface water samples were collected and analyzed to assess the current state; i.e. size and concentrations of the hydrocarbon plume. Soil samples were collected from the brine disposal area. It is, therefore, the purpose of this report to present the results of the soil, groundwater, and surface water sampling conducted at the site on January 24, 2008.

3.0 RECEPTORS

A well survey of the area in October 1996 determined that there are approximately nine water supply wells within 1,500 feet of the site (Figure 3) and another seven wells within 1,750 feet of the site. Five of these wells are separated from the site by a stream valley (Figure 4). The names and addresses of water well users within 1,500 feet of the site are shown in Table 1. During the fall of 2007 a public water main was installed along NC Hwy 22 to supply a proposed school north of the site. Individual homes have not yet been connected to the water system.

The owners of the properties located immediately adjacent to the site are listed in Table 2. Their locations are shown on Figure 3.

The hillside east of the site is dissected by numerous small gullies that feed a wet weather drainage feature located approximately 1,000 feet east of the site. This drainage feature flows into an unnamed tributary to Sandy Creek which is located approximately 1.3 miles east of the site (Figure 1).

4.0 METHODS

4.1 SOIL SAMPLING

In April 1990 personnel from Charles T. Main collected 39 soil samples from the salt/brine disposal area located behind the facility (Figure 5) for analysis of chlorides. The results of the analysis identified four areas where chloride levels were above 250 ppm. On January 24, 2008, personnel from Trigon mobilized to the site to collect soil samples from the salt/brine disposal area to determine the chloride concentrations. The results of the January 24, 2008 sample analysis are summarized in Table 3. A shallow (1 foot deep) and a deep (4 foot deep) samples were collected from SS-1, SS-2, SS-3, and SS-4. The samples were analyzed for chlorides using Method 300. Each sample was a composite sample made by combining soil from four different borings located approximately 5 feet apart. The locations of the soil samples are shown in Figure 6. Each sample was collected using a stainless steel hand auger. The samples were placed in a cooler and shipped to SGS-Paradigm Laboratories under chain-of-custody via FedEx courier.

4.2 MONITORING AND RECOVERY WELL SAMPLING

Monitoring wells MW-1S and MW-1D and recovery wells RW-1, RW-2, RW-3, RW-4, RW-6, and RW-7 were sampled on January 24, 2008. RW-5 was not sampled due to a leak in the piping. The locations of the monitoring and recovery wells are shown on Figure 2. The samples were sent to SGS-Paradigm Laboratories and analyzed for volatile and aromatic hydrocarbons using EPA Method 602 plus MTBE and DIPE and for chloride.

Prior to collecting the samples, the water level in each well was measured and recorded and a minimum of three well volumes of water was removed or the well was bailed dry using either a bailer or in place electric pumps. After purging, the monitoring well samples were collected with a new disposable bailer. The recovery well samples were collected from sample ports located at the well head. The samples were collected in laboratory supplied bottles, preserved, and shipped via over night courier under chain-of-custody to SGS-Paradigm Laboratories. Field sampling data sheets are included in Appendix B. Purge water was pumped into an on-site tanker truck and hauled to Smithfield Foods facility in Bladen County.

During the fall of 2007 the Hancock Hams facility was vandalized resulting in electrical power service being permanently cut off. The recovery well system has been modified to operate on power supplied from a portable generator.

4.3 WATER WELL SAMPLING

Eight water wells were sampled on January 28, 2008. The South Supply Well (SW) was not sampled because the pump was not running. The samples were sent to SGS-Paradigm Laboratories and analyzed for volatile and aromatic hydrocarbons using EPA Method 602 plus MTBE and DIPE. The locations of the water wells are shown on Figure 2. Prior to collecting the samples, the pumps in the water wells were allowed to run for approximately 10 minutes to flush the lines and storage tanks. The samples were then collected from an outside faucet as close to the well as possible. Two water samples were collected from the Hancock well. One sample, Hancock Pre, was collected prior to the treatment system and represents the well water quality. A second sample, Hancock Post, was collected at the kitchen sink and represents the point of use water quality. The samples were collected in laboratory supplied bottles, preserved, and shipped via over night courier under chain-of-custody to Paradigm Laboratories. Field sampling data sheets are included in Appendix B.

4.4 STREAM SAMPLING

The stream located east of the site was sampled from two locations (lower and mid) on January 28, 2008, and analyzed for volatile and aromatic hydrocarbons using EPA Method 602 plus MTBE and DIPE (Figure 2). An upper stream sample was not collected because the stream bed was dry at the time of sample collection. The samples were collected in laboratory supplied bottles, preserved, and shipped via over night courier under chain-of-custody to SGS-Paradigm Laboratories. Field sampling data sheets are included in Appendix B.

4.5 FIELD MEASUREMENTS

The static water level in each monitoring and recovery well sampled was measured on January 28, 2008. The water level was measured using an electronic water level meter accurate to 0.01 feet. The water level measurement data are recorded on the field sampling sheets included in Appendix B.

5.0 RESULTS

5.1 SOIL SAMPLES

No chloride above 250 ppm was detected in any of the shallow (one foot deep) soil samples. Chloride levels were higher in the four foot deep sample at each location, but only exceeded 250 ppm in the four foot sample collected at SS-4. The analytical results are summarized in Table 3 and the laboratory report is included in Appendix C.

5.2 MONITORING WELLS

Chloride was detected in wells MW-1S and MW-1D above the State's 2L .0202 Standard of 250 ppm. No aromatic hydrocarbons were detected in the samples. The laboratory results are summarized in Table 4 and the complete laboratory reports are included as Appendix C. Historical laboratory results of the monitoring wells are summarized in Table 5.

5.3 RECOVERY WELLS

Analysis of samples collected from RW-1 did not detect any hydrocarbons. The analysis of the samples from RW-3, RW-6, and RW-7 detected concentrations of benzene above the State's 2L .0202 standard. The analysis of the sample from RW-7 also detected concentrations of ethylbenzene and total xylenes above the State's 2L .0202 standards. Chloride was detected above the State's 2L .0202 standard in recovery wells RW-1, RW-2, and RW-3. The laboratory results are summarized in Table 4 and the laboratory report is included as Appendix C. Historical laboratory results of the recovery wells are summarized in Table 5.

To track petroleum associated contaminant concentrations over time, wells that have contaminant concentrations that have exceeded the State 2L standards during more than two consecutive sampling events were used to create contaminant concentration versus time graphs. This frequency was chosen solely to provide more than a two-point line on the graph. Figures 7 and 8 show the benzene concentration versus time in RW-3 and RW-6, respectively, and Figure 9 shows the benzene, ethylbenzene, toluene, and xylenes concentrations versus time in RW-7.

5.4 WATER SUPPLY WELLS

The analysis of the sample from the Beal well detected concentrations of IPE below the State's 2L .0202 standard. No organic compounds were detected in any of the remaining water well samples. Chloride was detected in all the water wells, but only above the State's standard in the sample collected before the treatment system in the Hancock (6) well. The laboratory results are summarized in Table 4 and the laboratory report is included as Appendix C. Historical laboratory results for the water wells are summarized in Table 6.

To track the petroleum associated contaminant concentrations over time, wells that have contaminant concentrations that have exceeded the State 2L standards during more than two consecutive sampling events were used to create contaminant concentration versus time graphs. Figures 10, 11, and 12 show the benzene concentrations versus time in the South well (SW), Ed Rhodes well (ERW), and Hancock well (6), respectively.

5.5 STREAM SAMPLES

Analysis of the samples collected from the stream detected chloride concentrations below the surface water quality standard of 250 ppm. Chloride concentrations have not been detected above the 2L Standard in the stream for nearly nine years. The laboratory results of the January 24, 2008 stream sampling event and historical results are summarized in Table 7. The laboratory report is included as Appendix C.

5.6 GROUNDWATER FLOW DIRECTION

The groundwater measurements collected in January 24, 2008 were used to prepare a groundwater surface contour map (Figure 13). The data show groundwater in both the residuum and bedrock are moving generally to the southeast toward the stream. The water level data are summarized in Table 8.

5.7 PLUME GEOMETRY

Based on the data collected during the January 2008 sampling event, chloride is concentrated in the area immediately behind (east-southeast) the plant (MW-1S and RW-3). The concentration of chloride in the

Hancock (6) water supply well may be the result of groundwater being drawn toward the well along a fracture oriented in a northeast-southwest direction. A diffuse plume of chloride extends to the north, southwest, and west of the plant. This larger diffuse chloride plume could be the cumulative result of incidental spills at the plant over the last 40 years, diffusion of the chloride through the aquifer, or pumping-induced movement along fractures. The current location of the chloride plume is shown in Figure 14.

The petroleum release reportedly occurred in the area of UST Pit B. A BTEX plume extends from RW-3 to RW-7 located on the north side of the plant. The BTEX plume does not reach the creek east of the site, based on stream sampling data. The current locations of the benzene, ethylene, toluene, and xylenes plumes are shown in Figures 15, 16, 17, and 18, respectively.

6.0 CONCLUSIONS

Based on the data collected from our investigation, we have developed the following conclusions and recommendations:

- 1. No petroleum hydrocarbons were detected in the samples collected from the nearby water supply wells during this sampling event with the exception of 2.46 ppb of IPE being detected in the Beal well. IPE has been detected sporadically at low concentrations in the Beal well. IPE has also been detected at low concentrations in the South, Hancock, and Ed Rhodes wells. Hydrocarbons associated with the UST release have consistently been detected in RW-3, RW-6, and RW-7. The concentration of hydrocarbons in RW-3 fluctuated between 1993 and 2004, but has been on a generally decreasing trend since 2005. The concentration of benzene in RW-6 has remained consistent over the last six years, but was somewhat lower during this sampling event. The concentrations of benzene, ethylbenzene, toluene, and xylenes (BTEX) have consistently been the highest in RW-7 and had remained essentially unchanged during the last three years, but were lower during this sampling event. These data indicate that the hydrocarbons plume has remained unchanged in size and the concentration of hydrocarbons has remained unchanged or is lower in the core of the plume.
- 2. The concentration of chloride in all the shallow soil samples has remained below a concentration of 250 ppm for the last four years. The differences in chloride concentrations at depth from one year to the next are likely due to variations in sampling locations.

- 3. The shallow residuum and deep bedrock aquifers are contaminated with chlorides. All the water wells in the immediate area have detectable concentrations of chlorides, but only one exceeded the 2L Standard. Samples from the Hancock well consistently have concentrations of chlorides above the State's 2L Standard of 250 ppm. The concentrations of chlorides in the samples have remained fairly constant over the 18 year sampling history at the site.
- 4. All the residences within 1,000 feet of the site have had point-of-use reverse osmosis systems installed at the kitchen sink. In addition, a point-of-entry carbon adsorption system was installed at the Hancock residence. As a result, there is a limited risk of exposure to hydrocarbons or chloride for people in the area. The systems are maintained on a quarterly basis. However, some residents do not always allow access to their home.

7.0 RECOMMENDATIONS

Concentrations of hydrocarbons and chloride in site groundwater have remained fairly constant or have dropped since the last monitoring event. Based on this, and the fact that impacted nearby residences have maintained water treatment systems, Trigon recommends continued monitoring as specified in the February 2004 Corrective Action Plan. Once the nearby residences have been connected to the public water system, NCDENR will be asked to reevaluate the status of the UST incident at the site.

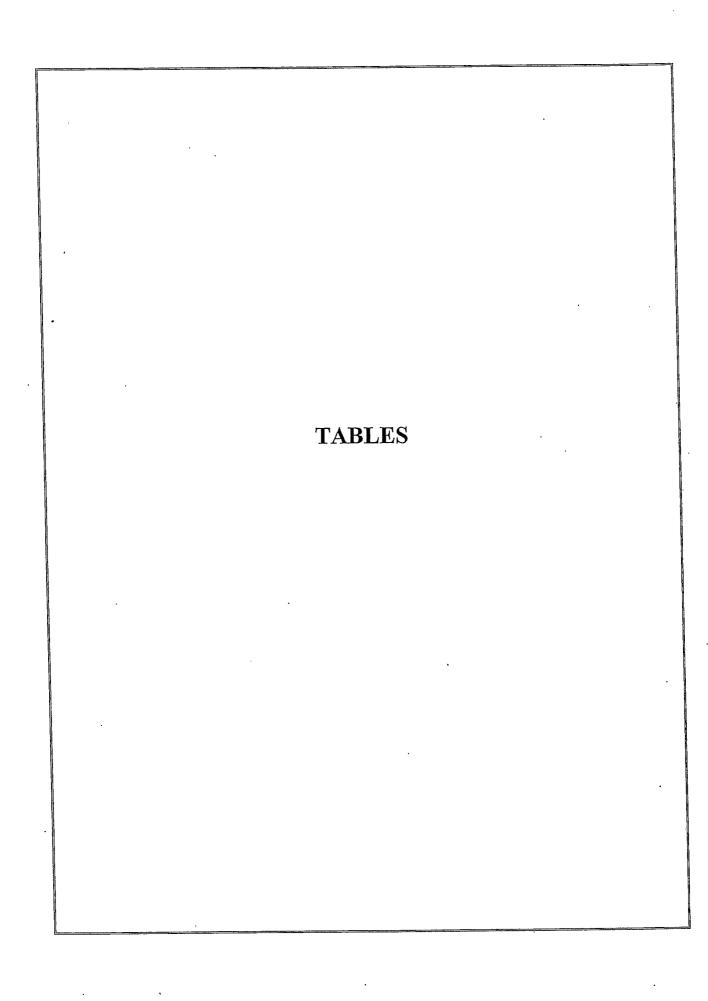


TABLE 1: PROPERTIES WITHIN 1,500 FEET OF THE SITE WITH WATER WELLS

Parcel ID No.	Property Owner	Property Address
7794400682	Sherry J. Norman	3575 NC Hwy 22N, Franklinville, NC 27248
7794403084	William E. & Jane P. Rhodes	3520 NC Hwy 22 N., Franklinville, NC 27248
7794308034	Joseph & Anne Sue Beal	3511 NC Hwy 22 N., Franklinville, NC 27248
7793491793	Hancock Old Fashion Ctry Ham	3482 NC Hwy 22N., Franklinville, NC 27248
7793491252	Julia S. Hancock	3456 NC Hwy 22 N., Franklinville, NC 27248
7793395540	Wilbert L. Hancock	1716 Academy Rd. Ext., Franklinville, NC 27248
7793394490	Terry Wesley	P. O. Box 1300, Ramseur, NC 27316
7793393252	Raymond Jester, Jr.	3419 NC Hwy 22 N., Franklinville, NC 27248
7793392064	Peggy J. Brown	3399 NC Hwy 22N., Franklinville, NC 27248
7793381857	James T. & Charlotte Kivett	3367 NC Hwy 22 N., Franklinville, NC 27248
7793582180	Richard Wallace	3519 Cedar Forest Rd, Franklinville, Nc 27248
7793580431	Irene C. Garrett	3521 Cedar Forest Rd, Franklinville, NC 27248
7793487411	Steven E. & Loretta Thompson	3505 Cedar Forest Rd, Franklinville, NC 27248

Note: Locations shown on Figure 3.

TABLE 2: ADJACENT PROPERTY OWNERS

Parcel ID No.	Property Owner	Property Address
7794403084	William E. & Jane P. Rhodes	3520 NC Hwy 22 N., Franklinville, NC 27248
7794308034	Joseph & Anne Sue Beal	3511 NC Hwy 22 N., Franklinville, NC 27248
7793491252	Julia S. Hancock	3456 NC Hwy 22 N., Franklinville, NC 27248
7793593950	George H. & Barbara Poe	3862 HardinEllison Rd., Franklinville, NC 27248
7793597552	Mark A. & Marcia Coponen	3896 HardinEllison Rd., Franklinville, NC 27248
7793395540	Wilbert L. Hancock	1716 Academy Rd. Ext., Franklinville, NC 27248

Note: Locations shown on Figure 3.

TABLE 3: SOIL SAMPLE RESULTS: CHLORIDE

Dépth	1	Location														
in Feet		SC	T _1		SCL-2				SCL-3				SCL-4			
III Feet	7/22/04	8/23/05	6/20/06	1/24/081	7/22/04	8/23/05	6/20/06	1/24/081	7/22/04	8/23/05	6/20/06	1/24/08 ¹	7/22/04	8/23/05	6/20/06	1/24/081
	1/22/04				217.0	29.0	BDL	52.7	80.5	23.9	65.1	23.1	8.2	35.2	45.6	6.9
1.0	3.6	18.8	103.0	7.8							NS	158.0	3.6	325.0	NS	429.0
4.0	3.3	18.3	NS	1.5	3320.0	NS	NS	146.0	670.0	12.0	149	156.0	5.0	323.0	110	

Notes:

Results shown in parts per million

NS - Not Sampled

¹Samples collected on 1/24/08 are labeled SS-1, SS-2, SS-3, and SS-4

TABLE 4: HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB 4 x 10"	Method 601	Lead 15	Chloride 250
2L Standards	1	29	1,000	530		200	70	4 X 10			250
					Monitoring V	Velis					
rw-1S								374	NA I	NA	NA.
10/23/88	BQL	BQL	BQL	BQL		NA.	NA	NA NA	NA NA	NA NA	3,800
11/30/88	NA	NA	NA	NA		NA	NA	NA NA	BQL	21.9	9,844
10/01/96	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	6.53	4,590
02/17/98	BQL	BQL	BQL	BQL		BQL	BQL	BQL	BQL	12.4	3,150
06/12/03	BQL	BQL	1.9	BQL	1.9	BQL	BQL	NA NA	NA NA	BQL	3,200
10/08/03	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	2,710
01/08/04	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	2,800
04/07/04	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	2,700
07/20/04	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	2,351
12/15/04	BQL	BQL	1.24	BQL	1,24	BQL	BQL	NA NA	NA NA	NA NA	2,620
03/24/05	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	2,210
08/23/05	BQL	BQL	BQL	BQL		BQL	BQL BQL	NA NA	NA NA	NA NA	1,990
12/01/05	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA	1,700
03/08/06	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	1,541
06/20/06	BQL	BQL	BQL	BQL		BQL	BOL	NA NA	NA NA	NA NA	1,662
10/12/06	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA.	1,496
01/03/07	BQL	BQL	BQL	BQL		BQL	BOL	NA NA	NA NA	NA NA	1,346
03/22/07	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	1,362
07/18/07	BQL	BQL	BQL	BQL		BQL BQL	BOL	NA NA	NA NA	NA	1,440
01/24/08	BQL	BQL	BQL	BQL		BQL	PÓF	, MA	1111		1
TW-1D									NA	NA	740
11/9-10/88	BQL	BQL	BQL	BQL		NA	NA	NA NA	NA NA	NA NA	1,387
02/29/96	NA	NA	NA	NA		NA	NA	NA NA	BQL	112	1,781
10/11/96	BQL	BQL	BQL	BQL		BQL	BQL		NA NA	155	851
02/19/98	BQL	BQL	BQL	BQL		BQL	BQL	BQL NS	NS	NS	NS
06/12/03	NS	NS	NS	NS		NS	NS		NA NA	23.5	1,100
10/08/03	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	BQL	1,080
01/08/04	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	BQL	1,040
04/07/04	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	NA NA	987
07/20/04	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	NA NA	1,029
12/15/04	BQL	BQL	BQL	BQL		BQL	BQL		NA NA	NA NA	1,150
03/24/05	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	NA NA	1,480
08/23/05	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	NA NA	1,370
12/01/05	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	NA NA	1,200
03/08/06	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	NA NA	1,394
06/20/06	BQL	BQL	BQL	BQL	<u> </u>	BQL	BQL	BQL	NA NA	NA NA	1,297
10/12/06	BQL	BQL	BQL	BQL		BQL	BQL	BQL		NA NA	1,449
01/03/07	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	NA NA	1,104
3/22/07	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	1,104
07/18/07	BQL	BQL	BQL	BQL		BQL BQL	BQL BQL	NA NA	NA NA	NA NA	1,000
	BQL	BQL	BOL	BQL							

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA-Not analyzed for this compound

PLW - Parking Lot Well

BQL-Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

²Sample collected by Charles T. Main

Sample collected by Smithfield Foods

^{*}Sample collected by BPA Environmental & Engineering, Inc.
*EPA Method 602 with a detection limit of 1 to 5 ppb

⁶ EPA Method 504.1 with a Detection Limit of 0.02 ppb

^{&#}x27;EPA Method 601 with a detection limit of 1 to 5 ppb

^{*}Method 239.1 with a detection limit of 5 ppb

Method SM4500C with a detection limit of 0.10 ppm

¹⁰ Collected on 9/23/88

[&]quot;Sample collected by Russnow, Kane, and Andrews

^{144/865 -} Sample collected near water table/sample collected at depth

Sample 3C collected from Packer Test Interval 220 - 240 ft. bls.

¹³ Sample 3B Collected from Packet Test Interval 290 - 310 ft. bls.

¹⁴ Sample 3A Collected from Packer Test Interval 319 - 339 ft. bls.

¹³ Sample 6A Collected from Packer Test Interval 167 - 187 ft. bls.

¹⁶ Sample 7B Collected from Packer Test Interval 170 - 190 ft. bls.

^{&#}x27;' Sample collected by Trigon Engineering Consultants, Inc.

TABLE 4: HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB 4 x 10	Method 601	Lead 15	Chloride 250
2L Standards	1	29	1,000	530	-	200	70	4 X 10		13 (230
					Recovery W	ells					
W-1									NA I	NA	473
05/26/93	NA	NA	NA	NA		NA	NA	NA		23	284
02/17/98	BQL	BQL	BQL	BQL		BQL	20	BQL	BQL		492
03/23/99	BQL	BQL	BQL	BQL		BQL	13	NA	NA POO	NA.	553
06/12/03	BQL	BQL	BQL	BQL		BQL	2.7	BQL	BQL	NA NA	550
10/08/03	BQL	BQL	BQL	BQL		BQL	1	NA	BQL	NA NA	525
01/08/04	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	BQL		612
04/07/04	BQL	BOL	BQL	BQL		BQL	1.9	NA	BQL	NA NA	643
07/20/04	BQL	BQL	BQL	BQL	-	BQL	BQL	BQL	NA	NA	
12/15/04	BQL	BQL	BQL	BQL		BQL	1.07	BQL	NA NA	NA	594 569
03/24/05	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	
08/23/05	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	668
12/01/05	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	530
03/08/06	BQL	BOL	BQL	BQL	_	BQL	BQL	NA	NA	NA	190
06/20/06	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	377
10/12/06	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	486
01/03/07	BQL	BOL	BQL	BOL		BQL	BQL	NA	NA NA	NA	665
03/22/07	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA	308
07/18/07	BQL	BOL	BQL	BQL		BQL	BQL	NA	NA	NA	704
01/24/08	BQL	BOL	BQL	BQL		BQL	BQL	NA	NA	NA	692
01/24/08	DQD	202		<u> </u>							
W-2											
05/26/93	BQL	BQL	BQL	BQL	_	BQL	NA	NA	NA	NA	429
02/17/98	BOL	BOL	BQL	BQL		BQL	22	BQL	BQL	16.8	255
03/23/99	BQL	BQL	BQL	BQL		BQL	12	NA	NA NA	NA	419
06/12/03	1.2	BOL	1.1	BQL	2,3	BQL	BQL	BQL	BQL	- 5.48	575
10/08/03	BQL	BQL	BOL	BQL	_	BQL	1.3	NA	NA	BQL	370
01/08/04	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	BQL	76
	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA	BQL	62
04/07/04	BOL	BQL	BOL	BQL		BQL	BQL	NA	NA NA	NA	75
12/15/04			BQL	BOL		BQL	BQL	NA	NA	NA	77:
03/24/05	BQL	BQL	1.51	BQL	1.51	BQL	BQL	NA	NA	NA	659
08/23/05	BQL		BQL	BOL		BQL	BQL	NA	NA	NA	78.
12/01/05	BQL	BQL	BQL	BQL	 	BQL	1.7	NA	NA	NA	56
03/08/06	BQL	BQL		BQL		BQL	2,3	NA	NA	NA	78:
06/20/06	BQL	BQL	BQL	BOL		BQL	1.95	NA	NA	NA	519
10/12/06	BQL	BQL	BQL			BQL	1.77	NA NA	NA	NA	64
01/03/07	BQL	BQL	BQL	BQL		BOL	2,32	NA NA	NA NA	NA	44
03/22/07	BQL	BQL	BQL	BQL			BQL	NA NA	NA NA	NA NA	440
07/18/07	BQL	BQL	BQL	BQL	 	BQL	2.15	NA NA	NA NA	NA	498
01/24/08	BQL	BQL	BQL	BQL		BQL	4.13	11/4	11/1		

Notes:

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

PLW - Parking Lot Well

BQL-Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

- ⁶ EPA Method 504.1 with a Detection Limit of 0.02 ppb
- "EPA Method 601 with a detection limit of 1 to 5 ppb
- *Method 239.1 with a detection limit of 5 ppb
- Method SM4500C with a detection limit of 0.10 ppm
- 10 Collected on 9/23/88
- 11 Sample collected by Russnow, Kane, and Andrews
- 144/865 Sample collected near water table/sample collected at depth
- ¹² Sample 3C collected from Packer Test Interval 220 240 ft. bls.
- ¹³ Sample 3B Collected from Packet Test Interval 290 310 ft. bls.
- ¹⁴ Sample 3A Collected from Packer Test Interval 319 339 ft. bls.
- ¹³ Sample 6A Collected from Packer Test Interval 167 187 ft. bls.
- 16 Sample 7B Collected from Packer Test Interval 170 190 ft. bls.
- "Sample collected by Trigon Engineering Consultants, Inc.

Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

Sample collected by Charles T. Main

³ Sample collected by Smithfield Foods

Sample collected by BPA Environmental & Engineering, Inc.
PEPA Method 602 with a detection limit of 1 to 5 ppb

TABLE 4: HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead 15	Chloride 250
2L Standards	1	29	1,000	530		200	70	4 x 10		15	230
RW-3		·									
05/26/93	NA	NA	NA	NA		NA	NA	NA	NA	NA	1,219
03/17/98	NA NA	NA	NA	NA		NA	NA	NA	NA	NA .	4,250
02/17/98	190	BQL	32	BQL	222	BQL	22	BQL	BQL	29.9	3,800
10/20/12	43	BQL	20	16	79	BQL	9	NA	NA	NA NA	NA 4,250
10/20/13	66	BQL	27	23	116	BQL	17	NA	NA	NA NA	6,400
10/20/14	180	BQL	65	74	319	BQL	21	NA	NA	NA NA	3,423
03/23/99	85	BQL	12	BQL	97	BQL	32	NA	NA	5.45	4,230
06/12/03	45	BQL	160	219	424.00	BQL	16	BQL	BQL	BQL	3,800
10/08/03	99	84	300	560	1,043.00	BQL	79	NA	NA	BQL	4,210
01/08/04	110	20	99	360	589.00	BQL	30	NA	NA	BQL	4,850
04/07/04	130	18	480	650	1,278.00	BQL	91	NA	NA	NA NA	2,720
07/20/04	74.9	67	137	253.8	532,70	BQL	BQL	NA	NA	NA NA	3,705
12/15/04	41.6	10,8	34	68.7	155,10	BQL	13,8	NA	NA	NA NA	4,010
03/24/05	85.2	37.7	270	226	618.90	BQL	BQL	NA NA	NA	NA NA	3,290
08/23/05	63.2	43.4	61.4	34.9	202.90	8	3.89	NA	NA	NA NA	4,600
12/01/05	54.7	7.25	BQL	26.8	88.75	BQL	12.2	NA	NA NA	NA NA	4,400
03/08/06	17	2.6	12	11	42.60	BQL	7	NA NA		NS NS	NS
06/20/06	NS	NS	NS	NS		NS	NS	NS	NS NS	NS NS	NS
10/12/06	NS	NS	NS	NS		NS	NS	NS		NA NA	1,758
01/03/07	2	BQL	12	4	18	BQL	BQL	NA	NA	NA NA	3,261
03/22/07	6.24	1.90	14,30	16 94	39.38	3,33	6.03	NA	NA NA	NA NA	3,767
07/18/07	39.70	20,10	69.80	84.60	214,20	BQL	4,05	NA	NA NA	NA NA	2,940
01/24/08	7,35	BQL	3.19	3.81	14.35	BQL	5.24	NA	INA	IIA_	2,540
RW-4					,			NA NA	l NA	NA NA	457
05/26/93	BQL	BQL	BQL	BQL		BQL	NA	BQL	BQL	30,8	226
02/17/98	BQL	BQL	BQL	BQL		BQL	1		NA NA	NA NA	410
03/23/99	BQL	BQL	BQL	BQL		BQL	5	NA BQL	BQL	BQL	368
06/12/03	BQL	BQL	BQL	BQL		BQL	1.7		NA NA	BOL	400
10/08/03	BQL	BQL	BQL	BQL		BQL	2.8	NA NA	NA NA	BQL	304
01/08/04	BQL	BQL	BQL	BQL		BQL	2,2	NA NA	NA NA	BQL	323
04/07/04	BQL	BQL	BQL	BQL		BQL	2.3 1.9	NA NA	NA NA	NA NA	277
07/20/04	BQL	BQL	BQL	BQL		BQL		NA NA	NA NA	NA NA	271
12/15/04	BQL	BQL	BQL	BQL	<u> </u>	BQL	2.05	NA NA	NA NA	NA NA	249
03/24/05	BQL	BQL	BQL	BQL		BQL	2.33	NA NA	NA NA	NA NA	228
08/23/05	BQL	BQL	BQL	BQL		BQL	1.81	NA NA	NA NA	NA NA	220
12/01/05	BQL	BQL	BQL	BQL		BQL	1.13	NA NA	NA NA	NA NA	120
03/08/06	BQL	BQL	BQL	BQL		BQL	1	NA NA	NA NA	NA NA	218
06/20/06	BQL	BQL	BQL	BQL		BQL	1.65	NA NA	NA NA	NA NA	217
10/12/06	BQL	BQL	BQL	BQL		BQL	1.57		NA NA	NA NA	428
01/03/07	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	220
03/22/07	BQL	BQL	BQL	BQL		BQL	1.56	NA NA	NA NA	NA NA	205
07/18/07	BQL	BQL	BQL	BQL		BQL	1.04	NA NA	NA NA	NA NA	172
01/24/08	BQL	BQL	BQL	BQL	<u> </u>	BQL	1.49	I NA	I NA	1471	<u></u>

Notes

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

PLW - Parking Lot Well

BQL-Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

¹ Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

Sample collected by Charles T. Main

Sample collected by Smithfield Foods

⁴ Sample collected by BPA Environmental & Engineering, Inc.

EPA Method 602 with a detection limit of 1 to 5 ppb

EPA Method 504.1 with a Detection Limit of 0.02 ppb

EPA Method 601 with a detection limit of 1 to 5 ppb

Method 239.1 with a detection limit of 5 ppb

[&]quot;Method SM4500C with a detection limit of 0.10 ppm

¹⁰ Collected on 9/23/88

¹¹ Sample collected by Russnow, Kane, and Andrews

^{144/865 -} Sample collected near water table/sample collected at depth

¹² Sample 3C collected from Packer Test Interval 220 - 240 ft. bls.

¹³ Sample 3B Collected from Packet Test Interval 290 - 310 ft. bls.

¹⁴ Sample 3A Collected from Packer Test Interval 319 - 339 ft. bls.

¹⁵ Sample 6A Collected from Packer Test Interval 167 - 187 ft. bls.

¹⁶ Sample 7B Collected from Packer Test Interval 170 - 190 ft. bls.

[&]quot;Sample collected by Trigon Engineering Consultants, Inc.

TABLE 4: HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	МТВЕ	IPE	EDB	Method 601	Lead	Chloride
2L Standards	1	29	1,000	530		200	70	4 x 10		15	250
RW-5		<u></u>		<u> </u>	*						
05/26/93	BOL	BQL	BQL	BQL		BQL	ÑA	NA	NA	NA	428
02/17/98	BQL	BOL	BQL	BOL		BQL	BQL	BQL	BQL	47.9	316
03/23/99	1	BQL	BQL	BQL	I	BQL	BQL	NA	NA	NA	386
06/12/03	BOL	BQL	BQL	BQL		BQL	BQL	BQL	BQL	BQL	282
10/08/03	BOL	BOL	BQL	BQL		BQL	BQL	NA	NA	BQL	340
01/08/04	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	5.72	324
04/07/04	BOL	BQL	BQL	BQL	_	BQL	BQL	NA	NA	BQL	338
07/20/04	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	315
12/15/04	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	347
03/24/05	BQL	BOL	BQL	BQL		BQL	2	NA	NA	NA	345
08/23/05	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	354
12/01/05	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	329
03/08/06	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	150
06/20/06	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS
10/12/06	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS
01/03/07	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	404
03/22/07	NS NS	NS	NS	NS		NS	NS	NS	NS	NS	NS
03/22/07	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	298
RW-6	<u>,,, </u>	·			500.61	NA	NA NA	NA	l NA	NA	144/865
05/26/88	252,18	NA	12.34	236,09	500.61	NA NA	NA NA	NA NA	NA.	NA	800
10/01/88	980	BOL	94	69 44	1,143	27	NA NA	NA NA	NA NA	NA	245
05/26/93	574	BQL	56	36	162	BQL	15	BQL	BQL	BQL	301
02/17/98	55	BOL	BOL	BQL	-	BQL	8	NA	NA	NA	615
10/21/98	BQL		BQL	BQL	5	BQL	9	NA	NA	NA	599
03/23/99	5	BQL	210	310	640	BQL	12	BQL	BQL	BQL	521
06/12/03	84	36 52	220	380	728	BOL	23	NA NA	NA	12	310
10/08/03	76		170	310	571	BQL	32	NA	NA	BQL	223
01/08/04	51	24	170	184	366	BQL	10	NA	NA	BQL	275
04/07/04	38	327	141	226	735	BQL	12	NA.	NA	NA	219
07/20/04	41	20.8	110	160,5	324.7	BQL	7.5	NA	NA	NA	190
12/15/04	33.4		80.7	129.4	253.7	BQL	6.05	NA	NA	NA	195
03/24/05	25.7	17.9	124	182.7	365.9	BQL	5,82	NA NA	NA	NA	167
08/23/05	35,8	23.4	117	147	311.4	BQL	5.98	NA NA	NA	NA	185
12/01/05	31.7	15.7		160	321	BQL	5,6	NA NA	NA	NA	120
03/08/06	31	20	110		402,3	BOL	12,3	NA NA	NA	NA	297
06/20/06	36.7	23.8	138	203.8	355	BQL	BQL	NA NA	NA NA	NA	212
10/12/06	30.7	20.5	130	173,8	333	BQL	BQL	NA NA	NA NA	NA	523
01/03/07	32	20	139	156		BQL	19.1	NA NA	NA NA	NA	212
03/22/07	35,6	23.8	127	164.3	350.7	BOL	BQL	NA NA	NA NA	NA NA	161
07/18/07	25.8	16	118	147	306.8	BQL	3.01	NA NA	NA NA	NA.	180
01/24/08	16.9	9.67	59.2	70.4	156.17	BQL	3.01	1177	1 1111		

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

PLW - Parking Lot Well

BQL- Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

¹ Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

² Sample collected by Charles T. Main ³ Sample collected by Smithfield Foods

⁴Sample collected by BPA Environmental & Engineering, Inc.

EPA Method 602 with a detection limit of 1 to 5 ppb

EPA Method 504.1 with a Detection Limit of 0.02 ppb

^{&#}x27;EPA Method 601 with a detection limit of 1 to 5 ppb

^{*}Method 239.1 with a detection limit of 5 ppb

Method SM4500C with a detection limit of 0.10 ppm

¹⁰ Collected on 9/23/88

¹¹ Sample collected by Russnow, Kane, and Andrews

^{144/865 -} Sample collected near water table/sample collected at depth

¹² Sample 3C collected from Packer Test Interval 220 - 240 ft. bls.

¹³ Sample 3B Collected from Packet Test Interval 290 - 310 ft. bls.

¹⁴ Sample 3A Collected from Packer Test Interval 319 - 339 ft. bls.

¹³ Sample 6A Collected from Packer Test Interval 167 - 187 ft. bls.

¹⁶ Sample 7B Collected from Packer Test Interval 170 - 190 ft. bls.

¹¹ Sample collected by Trigon Engineering Consultants, Inc.

TABLE 4: HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

Commend/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
Compound/Analysis	Denzene	29	1,000	530		200	70	4 x 10		15	250
2L Standards		L 23	-,,,,,,,,	L							
RW-7							NA	NA	l NA	NA	324
5/26/1993 ²	BQL	BQL	BQL	BQL		24 NA	NA NA	NA NA	NA NA	NA	211
3/29/1996 ²	NA	NA	NA	NA NA		BQL	BQL	0.98	BQL	213	140
2/17/1998	1,100	330	2,400	2,560	6,390 3430	BQL	83	NA NA	NA NA	NA	240
10/21/98	450	350	1,000	1,630	1660	BOL	110	NA	NA	NA	261
3/23/99	460	130	600	470		BOL	BQL	BQL	BQL	BQL	293
6/12/03	440	170	1100	1,960	3,670		BQL	BQL	NA NA	BQL	350
10/8/03	410	260	790	1,480	2,940	BQL					321
1/8/200417	470	320	990	1,640	3,420	BQL	120	BQL	NA	BQL	310
4/7/04	390	280	960	1,530	3,160	BQL	62	BQL	NA NA	BQL	
7/20/04	388	269	954	1,477	3,088	BQL	63.2	NA	NA	NA NA	283
12/15/04	361	322	981	1,354	3,018	BQL	89.9	NA	NA	NA.	299
3/24/05	359	289	956	1,517	3,121	BQL	BQL	NA_	NA	NA	258
8/23/05	276	222	607	1,597	2,702	BQL	34	NA	NA	NA	261
12/1/05	288	265	770	1,404	2,727	BQL	65.1	NA	NA	NA NA	287
3/8/06	300	260	800	1,400	2,760	BQL	BQL	NA	NA	NA	140
6/20/06	226	191	505	1,419	2,341	BQL	117	NA	NA	NA	276
10/12/06	201	183	475	1,073	1,932	BQL	BQL	NA	NA	NA NA	274
	263	32.9	584	1,287	2166.9	BQL	BQL	NA	NA	NA	333
1/3/07			495	1,030	1947	41.3	152	NA	NA	NA	220
3/22/07	218	204			1901	BQL	116	NA	NA	NA	220
7/18/07	205	193	444	1,059			27.0	NA	NA	NA	125
1/24/08	162	143	261	867	1433	BQL	27.0	I AA			

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

PLW - Parking Lot Well

BQL- Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

⁶ EPA Method 504.1 with a Detection Limit of 0.02 ppb

Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

Sample collected by Charles T. Main

Sample collected by Smithfield Foods

⁴ Sample collected by BPA Environmental & Engineering, Inc.

EPA Method 602 with a detection limit of 1 to 5 ppb

^{&#}x27;EPA Method 601 with a detection limit of 1 to 5 ppb

⁸ Method 239.1 with a detection limit of 5 ppb

Method SM4500C with a detection limit of 0.10 ppm

Collected on 9/23/88

¹¹ Sample collected by Russnow, Kane, and Andrews

^{144/865 -} Sample collected near water table/sample collected at depth

¹² Sample 3C collected from Packer Test Interval 220 - 240 ft. bls.

¹³ Sample 3B Collected from Packet Test Interval 290 - 310 ft. bls. 14 Sample 3A Collected from Packer Test Interval 319 - 339 ft. bls.

¹³ Sample 6A Collected from Packer Test Interval 167 - 187 ft. bls.

¹⁶ Sample 7B Collected from Packer Test Interval 170 - 190 ft. bls.

[&]quot;Sample collected by Trigon Engineering Consultants, Inc.

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

		Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lcad	Chloride
Compound/Analysis	Benzene	29	1,000	530		200	70	4 x 10 ⁻⁴		15	250
2L Standards	1	29	1,000		Water Supply	Wells					
SW-1										274	542
5/26/1988	BQL	NA	BQL	BQL		NA	NA	NA NA	NA	NA	600
8/30/1988	750	BQL	83	150	983	NA	NA	NA	NA	NA	562
5/20/1993	121	BQL	8	22	151	NA	NA	NA	NA	NA BQL	208
10/1/1996	BQL	BQL	BQL	BQL	-	4	37	NA	BQL	BQL	668
2/17/1998	BQL	BQL	BQL	BQL		BQL	22	BQL	BQL		553
6/12/2003	BOL	BQL	BOL	BQL		BQL	II	BQL	BQL	BQL	390
10/8/2003	BOL	BOL	BQL	BQL		BQL	44	NA NA	NA_	6,5 BOL	440
1/8/2004	BOL	BOL	BQL	BQL		BQL	3.4	NA NA	NA_		298
4/7/2004	BQL	BQL	BQL	BQL	-	BQL	6.2	NA NA	NA.	BQL	
7/20/2004	BQL	BQL	BQL	BQL		BQL	1.57	NA	NA	BQL	377 209
12/15/2004	BQL	BOL	BQL	BQL		BQL	4,46	NA	NA NA	NA.	353
3/24/2005	BOL	BQL	BQL	BQL	<u> </u>	BQL	1.28	NA	NA	NA	532
8/23/2005	BOL	BOL	BQL	BQL		BQL	BQL	NA	NA.	NA	
6/20/2006	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS NS
10/12/2006	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS NS
1/5/2007	NS	NS	NS .	NS		NS	NS	NS	NS	NS	NS NS
3/22/2007	NS	NS	NS	NS	_	NS	NS	NS	NS	NS	
7/18/2007	NS	NS	NS	NS	_	NS	NS	NS	NS	NS	NS NS
1/24/2008	NS	NS	NS	NS	-	NS	NS	NS	NS	NS	NS NS
172472000		<u> </u>	L								
Beal (1)										NA NA	93
8/30/1988	BQL	BQL	BQL	BQL		NA	NA	NA NA	NA NA		136
5/20/1993	BQL	BQL	BQL	BQL		NA	NA	NA	NA	NA NA	91.2
10/1/1996	BQL	BQL	BQL	BQL	-	BQL	4	NA	BQL	BQL	86
2/18/1998	BQL	BQL	BQL	BQL		BQL	17	BQL	NA	5.97	110
6/13/2003	BQL	BOL	BQL	BQL		BQL	BQL	BQL	BQL	BQL_	
10/8/2003	BOL	BQL	BQL	BQL	_	BQL	BQL	NA NA	NA NA	BQL	90
1/8/2004	BOL	BOL	BQL	BQL	_	BQL	3	NA	NA.	BQL	
4/7/2004	BOL	BOL	BQL	BQL		BQL	BQL	NA.	NA NA	BQL	77.5
7/20/2004	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA NA	BQL	
12/15/2004	BQL	BQL	BQL	BQL		BQL	9.89	NA.	NA NA	NA	154
3/24/2005	BOL	BQL	BQL	BQL	_	BQL	BQL	NA NA	NA NA	NA	85.4
8/23/2005	BQL	BOL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	99.4
12/1/2005	BOL	BOL	BQL	BQL	-	BQL	BQL	NA.	NA NA	NA NA	7.49
3/8/2006	BQL	BOL	BQL	BQL	-	BQL	5.4	NA.	NA NA	NA	63
6/20/2006	BQL	BQL	BOL	BQL		BQL	13,7	NA	NA	NA NA	218
10/12/2006	BOL	BQL	BQL	BOL		BQL	3.92	NA.	NA	NA	229
1/5/2007	BOL	BQL	BQL	BQL		BQL	2.2	NA	NA	NA NA	333
	BQL	BOL	BQL	BQL		BQL	2,8	NA	NA	NA NA	158
3/22/2007	BOL	BQL	BOL	BQL		BQL	BQL	NA	NA	NA	127
7/18/2007	BQL	BOL	BOL	BQL	-	BQL	2.46	NA	NA	NA	181
1/24/2008	I BÚL	בעם	1 200	1 242	<u>'</u>						

Notes:

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA-Not analyzed for this compound

NS - Not Sampled

BQL-Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl ether

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
2L Standards	1	29	1,000	530		200	70	4 x 10 ⁻⁴		15	250
2D Diandirds	· · · · · · · · · · · · · · · · · · ·	<u> </u>			Water Supply	Wells					
Vorman (2)											
8/30/1988	BQL	BQL	BQL	BQL		NA.	NA .	NA	NA	NA	8,6
5/20/1993	BQL	BQL	BQL	BQL		NA	NA	NA	NA NA	NA	49.9
10/1/1996	BQL	BQL	BQL	BQL	1	BQL	BQL	NA	BQL	BQL	
2/18/1998	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	BQL	43.4
6/12/2003	BQL	BQL	BQL	BQL	1	BQL	BQL	BQL	BQL	BQL	2.4
10/8/2003	BOL	BOL	BQL	BQL	-	BQL	BQL	NA	NA NA	BQL	6,7
1/8/2004	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA NA	BQL	5.82
4/7/2004	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	BQL	7.56
12/15/2004	BQL	BOL	BQL	BQL		BQL	BQL	NA	NA	BQL	9.5
3/24/2005	BOL	BQL	BQL	BOL	-	BQL	BQL	NA	NA NA	NA	8.58
8/23/2005	BOL	BOL	BQL	BQL	-	BQL	BQL	NA	NA	NA	10.8
12/1/2005	BQL	BQL	BOL	BOL	-	BQL	3.89	ŅĀ	NA.	NA	135
3/8/2006	BOL	BOL	BQL	BQL	-	BOL	BQL	NA	NA	NA	6,2
6/20/2006	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA	NA	19.6
10/12/2006	BOL	BOL	BOL	BQL		BQL	BQL	NA	NA NA	NA	17.7
1/5/2007	BQL	BOL .	BQL	BQL		BQL	BQL	NA	NA	NA	309
3/22/2007	BQL	BQL	BQL	BOL		BQL	BQL	NA	NA	NA	11,4
7/18/2007	BQL	BQL	BOL	BQL		BOL	BQL	NA	NA	NA	15
1/24/2008	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	5.93
172472008	DQL	262			<u></u>		<u> </u>				
bson (3)											
8/30/1988	BQL	BQL	BQL	BQL		NA	NA	NA	NA	NA	210
5/20/1993	BOL	BOL	BQL	BQL		NA	NA	NA	NA NA	NA NA	265
10/1/1996	BQL	BQL	BQL	BQL		BQL	BQL	NA	BQL	BQL	343
2/18/1998	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	BQL	205
6/13/2003	BOL	BOL	BQL	BOL		BQL	BQL	BQL	BQL	BQL	230
10/8/2003	BQL	BQL	BQL	BQL	_	BQL	BQL	NA	NA	12	260
1/8/2004	BOL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	276
4/7/2004	BQL	BOL	BQL	BQL		BQL	BQL	NA	NA NA	BQL	267
7/20/2004	BOL	BQL	BQL	BQL	-	BQL	BQL	NA NA	NA	BQL	302
12/15/2004	BQL	BQL	BQL	BQL	-	BQL	BQL	NA	NA	NA NA	238
3/24/2005	BQL	BOL	BQL	BQL		BQL	BQL	NA	NA NA	NA	235
8/23/2005	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA.	NA	230
12/1/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	402
3/8/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	100
6/20/2006	BQL	BQL	BQL	BQL	-	BQL	BQL	NA	NA	NA	191
10/12/2006	BQL	BQL	BQL	BQL	-	BQL	BQL	NA	NA	NA	174
1/5/2007	BOL	BQL	BQL	BQL		BQL	BQL_	NA	NA NA	NA NA	356
3/22/2007	BOL	BQL	BQL	BQL	-	BQL	BQL	NA	NA NA	NA	160.4
7/18/2007	BOI.	BOL	BOL	BQL	-	BQL	BQL	NA	NA NA	NA.	193

Notes

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

NS - Not Sampled

BQL- Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl ether

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride .
	Benzaie	29	1,000	530		200	70	4 x 10 ⁻⁴		15	250
2L Standards	1	25	1,000		Water Supply	Vells					
Presnell (4)									NA NA	NA	100
8/30/1988	BQL	BQL	BQL	BQL	<u></u>	NA	NA	NA NA	NA NA	NA NA	265
5/20/1993	BOL	BQL	BQL	BQL		NA	NA	NA			119
10/1/1996	BQL	BQL	BQL	BQL		BQL	BQL	NA	BQL	BQL	80.8
2/18/1998	BOL	BQL	BQL	BQL		BQL	BQL	BQL	NA	BQL	88
6/13/2003	BOL	BQL	BQL	BQL		BQL	BQL	BQL	2.9	BQL	86.
10/8/2003	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	74.7
1/8/2004	BQL	BQL	BQL	BQL	-	BQL	BQL	NA NA	NA NA	BQLBQL	70,9
4/7/2004	BOL	BQL	BQL	BQL		BQL	BQL	NA NA	NA		90,2
7/20/2004	BQL	BQL	BQL	BQL	<u></u>	BQL	BQL	NA NA	NA NA	BQL NA	76
12/15/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA		NA NA	87.3
3/24/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	103
8/23/2005	BOL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	80.8
12/1/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA		NA NA	45
3/8/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA		
6/20/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA.	92.9
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	82.5
1/5/2007	BQL	BQL	BOL	BQL	_	BQL	BQL	NA	NA	NA	119
3/22/2007	BQL	BQL	BQL	BQL	_	BQL	BQL	NA	NA	NA NA	75
7/18/2007	BOL	BQL	BQL	BQL	_	BQL	BQL	NA	NA	NA	88
1/24/2008	BOL	BOL	BQL	BQL	_	BQL	BQL	NA	NA	NA	80.8
1/2-1/2000											
Jester (5)						·		l NA	NA	NA	34
8/30/1988	BQL	BQL	BQL	BQL		NA NA	NA NA	NA NA	NA NA	NA NA	35
5/20/1993	BQL	BQL	BQL	BQL		NA NA	NA BOL	NA NA	BQL	BQL	493
10/1/1996	BQL	BQL	BQL	BQL		BQL	BOL	BQL	NA NA	BQL	67
2/17/1998	BQL	BQL	BQL	BQL		BQL	BOL	BOL	BQL	BQL	43
6/13/2003	BQL	BQL	BQL	BQL		BQL BQL	BOL	NA NA	NA NA	BOL	46
10/8/2003	BQL	BQL	BQL	BQL		BOL	BOL	NA NA	NA NA	BQL	42.9
1/8/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BOL	42.1
4/7/2004	BQL	BQL	BQL	BQL		BQL	BOL	NA NA	NA.	BQL	43.4
7/20/2004	BQL	BQL	BQL	BQL	=	BOL	BQL	NA NA	NA NA	NA.	47.5
12/15/2004	BQL	BQL	BQL	BQL			BQL	NA NA	NA NA	NA.	49,1
3/24/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA.	58.2
8/23/2005	BQL	BQL	BQL	BQL				NA NA	NA NA	NA NA	38.5
12/1/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	33
3/8/2006	BQL	BQL	BQL	BQL		BQL	BQL		NA NA	NA NA	44
6/20/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA		NA NA	47.1
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	127
1/5/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	46.6
3/22/2007	BQL	BQL	BQL	BQL	<u> </u>	BQL	BQL	NA		NA NA	51
7/18/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA_	NA NA	NA NA	43,3
1/24/2008	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	43,3

Notes:

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA-Not analyzed for this compound

NS - Not Sampled

BQL- Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl ether
* Sample actually taken before treatment system

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

	, n	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
Compound/Analysis	Benzene		1,000	530		200	70	4 x 10 ⁻⁴		15	250
2L Standards	1 1	29	1,000	330	Water Supply	Wells					
					yraur ouppry	Trops					
Hancock (6) before treatmen		701		13	25	NA	NA	NA	NA	NA	3,100
8/30/1988	11	BOL	BOL	BQL	192	NA	NA NA	NA	NA	NA	2,224
5/20/1993	192 NA	NA NA	NA.	NA NA		NA	NA	NA	NA	NA	2,741
2/29/1996		BQL	BQL	9	77	4	23	NA	BQL	6,55	4,189
10/1/1996	68 56	BQL	BQL	BOL	56	BQL	15	BQL	NA.	BQL	3,934
2/17/1998		BQL	BQL	BOL		BQL	3	BQL	BQL	BQL	2,300
6/13/2003	BQL	BQL	BOL	BOL		BQL	BQL	NA	NA	BQL	780
10/8/2003	BQL	BQL	BOL	BQL	-	BQL	BQL	NA	NA	BQL	826
1/8/2004	BQL		BQL	BOL		BQL	BQL	NA	NA	BQL	906
4/7/2004	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA	BQL	900
7/20/2004	BQL	BQL		BOL		BQL	BQL	NA	NA	NA	879
12/15/2004	BQL	BQL	BQL			BOL	BQL	NA	NA	NA	912
3/24/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA.	NA	NA	1,010
8/23/2005	BQL	BQL	BQL	BQL		BOL	BQL	NA NA	NA	NA	1,290
12/1/2005	BQL	BQL	BQL	BQL	-		BQL	NA NA	NA.	NA	1,400
3/8/2006	BQL	BQL	BQL_	BQL		BQL	BOL	NA NA	NA NA	NA	1,199
6/20/2006	BQL	BQL	BQL	BQL		BQL		NA NA	NA NA	NA NA	1,132
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	1,152
1/5/2007	BQL	BQL	BQL	BQL		BQL	BQL		NA NA	NA NA	926
3/22/2007	BOL	BQL	BQL	BQL		BQL	BQL	NA .		NA NA	1,265
7/18/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	1,000
1/24/2008	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	IVA	1,000
									· · · · · · · · · · · · · · · · · · ·		
. Hancock (6) after treatment	system					701	BOL	NA NA	NA NA	NA	1223*
6/20/2006	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NA NA	NA NA	NA NA	61,3
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA	127
1/5/2007	BQL	BQL	BQL	BQL		BQL	BOL	NA NA	NA NA	NA NA	83,8
3/22/2007	BQL	BQL	BQL	BQL		BQL		NS	NS	NS	NS
7/18/2007	NS	NS	NS	NS		NS_	NS _	NS NS	NS	NS	89.8
1/24/2008	BQL	BQL	BQL	BQL	<u> </u>	BQL	BQL	l N2	149	110	05.0

Notes.

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

NS - Not Sampled

BQL- Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl ether

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
2L Standards	1	29	1,000	530		200	70	4 x 10 ⁻⁴		15	250
2D Statutarus	<u> </u>		-7	· · · · · · · · · · · · · · · · · · ·	Water Supply	Wells					
Rhodes (ERW)											
5/26/1988	715.8	NA	108.5	276.32	1,100,62	NA	NA	NA NA	NA	NA	79
8/30/1988	400	BQL	71	BQL	471	NA	NA	NA	NA NA	NA	190
5/20/1993	39	BQL	BQL	BQL	39	NA	NA	NA	NA NA	NA NA	147
10/1/1996	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	BQL	171 86
2/18/1998	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	BQL	
6/12/2003	BQL	BQL	BQL	BQL		BQL	BQL	BQL	BQL	BQL	81 120
10/8/2003	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	BQL	
1/8/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	BQL	108
4/7/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	114
7/20/2004	BQL	BQL	BQL	BQL		BQL	1.57	NA NA	NA	BQL	123 109
12/15/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA.	NA	
3/24/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA NA	104 125
8/23/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA	103
12/1/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA NA	52
3/8/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA.	
6/20/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA	88.3 84.9
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	84.9 119
1/5/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA.	NA	NA	93.6
3/22/2007	BQL	BQL	BQL	BQL	_	BQL	BQL	NA.	NA	NA NA	93.6
7/18/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA NA	75.6
1/24/2008	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA.	/3.0
											
Brown (7)						,				nov.	380
6/12/2003	BQL	BQL	BQL	BQL		BQL	BQL	BQL	BQL	BQL BQL	420
10/8/2003	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	BOL	297
1/8/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	470
4/7/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA		BQL	408
7/20/2004	BQL	BQL	BQL	BQL		BQL	1.57	NA	NA NA		330
12/15/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	475
3/24/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	305
8/23/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	228
12/1/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA		NA NA	110
3/8/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA .	NA NA	NA NA	230
6/20/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA .	NA NA	NA NA	230
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	273
1/5/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA			177
3/33/07	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	224
7/18/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	224
1/24/2008	BQL	BQL	BQL	BQL		BQL	BQL	NA	I NA	NA	414

Notes

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

NS - Not Sampled

BQL- Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl ether

TABLE 6: HISTORICAL SURFACE WATER SAMPLE RESULTS

Compound/								S-1 (upper)											State
Analysis	10/31/885	10/11/96 ⁶	2/18/986	6/12/037	10/8/03 ⁷	1/8/047	4/7/04 ⁷	7/20/047	12/15/047	3/24/057	8/23/0517	12/01/0517	3/08/06 ¹⁷	6/20/0617	10/12/06 ¹⁷	1/3/07 ¹⁷	3/22/0717	7/18/07 ¹⁷	1/24/08 ¹⁷	Standard
Benzene ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	NS	1.19
Ethylbenzene ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	NS	
Toluene ¹	NΑ	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	NS	11
Total Xylenes	NA .	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	NS	
Total BTEX																		***	-	
MTBE ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	NS	
DIPE1	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	NS	
EDB ⁸	NA	BQL	BQL	BQL	NA	NA	NA	NA	NA.	NA	NS	NA	BQL	NS	NS	BQL	BQL	NS	NS	
Method 6012	NA	BQL	NA	BQL	NA	NA	NA	NA	NA	NA.	NS	NA	BQL	NS	NS	BQL	BQL	NS	NS	
Lead ³	NA	BQL	BQL	BQL	NA	NA	NA	NA	NA	NA	NS	NA	BQL	NS	NS	BQL	BQL	NS	NS	25
Chloride⁴	1,000	74.6	22.8	12	7.6	10.8	13.6	209	31.6	27 8	NS	33 3	35	NS	NS	37.5	23.3	NS	NS	250

Compound/										S-2 (mid)										State
Analysis	10/31/885	10/11/96 ⁶	2/18/98 ⁶	6/12/037	10/8/037	1/8/047	4/7/04 ⁷	7/20/041	12/15/047	3/24/057	8/23/05 ¹⁷	12/01/0517	3/08/0617	6/20/06 ¹⁷	10/12/06 ¹⁷	1/3/07 ¹⁷	3/22/0717	7/18/0717	1/24/0817	Standard
Benzene ^I	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	1.19
Ethylbenzene ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	
Toluene ¹	NA.	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	11
Total Xylenes	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	
Total BTEX																		***		
MTBE ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	
DIPE ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	
EDB ⁸	NA	BQL	BQL	BQL	NA	NA_	NA	NA_	NA	NA	NA	NA	BQL	BQL	NS	BQL	BQL	NS	NS	
Method 6012	NA	BQL	BQL	BQL	NA	NA	NA	NA	NA	NA	NA	NA	BQL	BQL	NS	BQL	BQL	NS	NS	
Lead ³	NA_	BQL	BQL	BQL	NA	NA.	NA	NA	NA	NA	NA	NA	BQL	BQL	NS	BQL	BQL	NS	NS	25
Chloride⁴	840	72.2	156	27	16	39.8	41.1	15.1	64.1	49.8	79.2	248	39	26.4	NS	39.9	55.9	NS	NS	250

Compound/										S-3 (lower)										State
Analysis	10/31/885	10/11/96 ⁶	2/18/98 ⁶	6/12/037	10/8/037	1/8/047	4/7/047	7/20/047	12/15/04	3/24/057	8/23/0517	12/01/0517	3/08/0617	6/20/0617	10/12/0617	1/3/07 ¹⁷	3/22/0717	7/18/0717	.1/24/0817	Standard
Benzene ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	1.19
Ethylbenzene ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	
Toluene ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	11
Total Xylenes	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	
Total BTEX										•		***								
MTBE ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	
DIPE ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	
EDB ⁸	NA	BQL	BQL	BQL	NA	NA	NA	NA	NA	NA	NA	NA	BQL	BQL	BQL	BQL	BQL	NS	BQL	
Method 6012	NA	BQL	NA	BQL	NA	NA	NA	NA	NA	NΑ	NA	NA	BQL	BQL	BQL	BQL	BQL	NS	BQL	_
Lead ³	NA	BQL	BQL	BQL	NA	NA	NA	NA	ÑΑ	NΑ	NA	NA	BQL	BQL	BQL	BQL	BQL	NS	BQL	25
Chloride⁴	700	295	54.7	29	32	53,4	53.1	97.1	105	51.2	35.6	140	61	75.8	25.9	79.8	70.9	NS	75.8	250

Notes:
All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2B Surface Water Quality Standards are bold
2B Standards - Subchapter 2B Quality Standards for Surface Water (NCAC 15A 2B.0200)
NS- Not Sampled
NA- Not analyzed for this compound
BQL- Below the quantitation limit of the method of analysis
MTBE - Methyl-tert-butyl-ether
IPE - Isopropyl Ether

BFA Method 602 with a detection limit of 1 to 2 ppb

2FPA Method 601 with a detection limit of 1 to 5 ppb

3FPA Method 239.1 with a detection limit of 5 ppb

3FPA Method SMA500C with a detection limit of 5 ppb

⁴EPA Method SM4500C with a detection limit of 0.10 ppm

Sample collected by Westinghouse Environmental Sample collected by BPA Environmental & Engineering, Inc Sample collected by Trigon Engineering Consultants, Inc. EPA Method 504.1 with a detection of 0 02 ppb

TABLE 7: SUMMARY OF MONITORING WELL AND GROUNDWATER ELEVATION DATA

														Static Wa	ter Levels								
	Eleva		w	eli Constructi (fl)	on	11/1	8/883	2/17-	19/984	3/1	3/994	5/2:	3/99 ⁴	6/12	2/036	10/	3/036		/04 ⁶	4/7	/04 ⁶		0/046
Well		t)				Deoth	6/00	Depth	1220	Depth	"	Depth		Depth		Depth	[Depth	1	Depth	}	Depth	(
No.	Top of	Top of	Length of	Depth	Depth		. 1		l }	Deput		(A)	Elevation	(8)	Elevation	(fL)	Elevation	(fL)	Elevation	(fL)	Elevation	(ft.)	Elevation
	Casing	Screen	Screen	of Casing ³	of Well	(ft.)	Elevation	<u>(ft)</u>	Elevation	(IL)	Elevation	14.25	831.06	14.21	828 63	14.34	828,50	14.17	828.67	14 07	828.77	14.32	828.52
MW-1S	842.84	845.31	5.0	NA.	15	13.95	831.36	13.20	832,11		ļ_ <u></u>		665.06		- 020 05	9.30	665.36	9.43	665.23	7.96	666.70	10.74	663.92
MW-ID	674.66	-	NA _	11.0	72	13.11	663.00	4 70	671.41			11,05			=	- 2.50	-003.20	7110					
P-1	809.32	811.84	2,40	NA	3	3,60	808 24		_=								 -						
P-2	ND	765 00	2.4	NA.	5.5	3.70	761.30	4.95	760.05			_=_			_=_		H- <u>-</u>						
P-3	682.98	684 89	2.4	NΛ	29	2.78	682.11	2 22	682 67							117.99	724.57	119 08	723.48	122.22	720,34	118.11	724.45
RW-I	842.56		NA	23.8	220		_	130 85	712.31	147.25	695.91	>151.50	<691.66	139.20	703.36		728.59	122.75	727.72	123 47	727.00	121.79	728.68
RW-2	850,47		NA	38.6	401			130.40	720.58	149.62	701 36	145,50	705.48	126.25	724.22	121 88		115.78	724 87	113 32	727.33	113.04	727 61
RW-3	840.65		NA	52.5	340		1	129.50	711.47	141.25	699.72	139,55	701 42	124 14	716.51	112.86	727.79		724.03	97 81	723 68	95,66	725.83
RW-4	821,49		NA.	20.0	301	_		105.20	715.10	119.11	701.19	118 25	702 05	103 34	718.15	96.11	725.38	97.46		107.22	723.85	105,78	725 29
RW-5	831.07		NA.	29.5	303			115.35	716 63	129 10	702 88	128 35	703.63	112 26	718 81	105.87	725.20	107.55	723.52		728.97	127.04	731.34
RW-6 (PLW)	858 38		NA.	37.7	267	137,64	721.68	137.28	722 04	151.10	708.22	150.35	708.97	132.53	725 85	126 69	731.69	128 68	729.70	129.41		125.09	731.91
RW-7	857.00		NA.	14.1	221		_	134.70	722.96	145.45	712.21	145.20	712.46	130 27	726,73	124.62	732 38	126.74	730 26	127.46	729.54	123.09	/31,71

														Static Wa	ter Levels								
	Eleva		™	'ell Constructi (ft)	on	01/0	s/056	03/2	4/056	087	3/05 ⁶	12/0	1/056	3/08	3/06 ⁶	6/20)/06 ⁶	10/1	2/066	1/3	/07 ⁶		2/076
Well	(20.0	Depth	3/03	Depth	1	Depth	1	Depth		Depth		Depth		Depth	i i	Depth	1 !	Depth	ł
No.	Top of	Top of	Length of	Depth	Depth			COL	Elevation	(fL)	Elevation	(0.)	Elevation	(ft)	Elevation	(fL)	Elevation	(fL)	Elevation	(fL)	Elevation	(fL)	Elevation
	Casing	Screen	Screen	of Casing ³	of Well	(fL)	Elevation	(IL)				13.93	828,91	12.95	829.89	14.05	828.79	14.16	828.68	13 64	829.20	13.82	829.02
MW-1S	842 84	845 31	5,0	NA	15	14.07	828.77	13,8	829.04	14.19	828 65							14 52	660,14	10.28	664.38	9 02	665.64
MW-ID	674 66	-	NA	11.0	72	10 027	664.64	7.39	667.27	11.39	663.27	12 15	662 51	12.33	662 33	12.35	662 31		000.14	10.20	004.30	702	- 005.01
P-1	809.32	811.84	2.40	NA	3	-	_											_=-					1
P-2	ND	765.00	2.4	NA	5.5																		
P-3	682 98	684 89	2.4	NA	2.9								L	301.00	720.74	121.49	721 07	123.17	719.39	123,65	718.91	122.61	719,95
RW-I	842.56	-	NΛ	23 8	220	121.75	720,81	118.31	724.25	118.11	724 45	121.85	720 71	121 82	720,74		724.43	128.63	721.84	127.99	722 48	125.4	725.07
RW-2	850.47		NΛ	386	401	127.24	723.23	122.99	727.48	123.92	726.55	127.16	723 31	124 04	726.43	126 04 115.52	725.13	115.6	725 05	124 6	716 05	114.97	725,68
RW-3	840 65		NA	52.5	340	121 92	718.73	114.96	725.69	114.1	726 55	123.01	717 64	115.14	725,51	104.2	717.29	102.22	719.27	102 08	719.41	100 59	720 90
RW-4	821.49	-	NA	20 0	301	100 26	721 23	96.98	724.51	96.69	724 80	100.49	721 00	100.43	721.06	111.21	719.86	112.42	718.65	112.34	718.73	110.62	720 45
RW-5	831.07		NA	29.5	303	110.45	720.62	107.1	723 97	106 89	724.18	110.64	720,43	110.65	720.42		731.34	125.65	732.73	133.33	725.05	131.52	726 86
RW-6 (PLW)	858.38		NA	37.7	267	131.44	726.94	128.78	729 60	128 17	730.21	132 01	726.37	131.69	726.69 727.33	127.04	727.56	131.36	725.64	131.34	725.66	129 46	727.54
RW-7	857.00	· -	NA	14.1	221	129.55	727.45	126.89	730.11	126.22	730.78	130,09	726.91	129.67	121.33	147.44	121.30	131,30	123,04	42127			

	Elev	. 1	,,,	ell Constructi			Static Was	ter Levels	
Well		g) (1)	"	(ft)	on	7/18	3/076	1/2	4/08 ⁶
No	Top of	Top of	Length of	Depth	Depth	Depth		Depth	1
	Casing	Screen	Screen	of Casing ⁵	of Well	(fL)	Elevation	(fL)	Elevation
MW-1S	842 84	845.31	5.0	NA	15	12,21	830.63	14 6	828.24
MW-ID	674.66	-	NA	11.0	72	12.77	661.89	129	661.76
P-1	809.32	811.84	2.40	NΛ	3	I			<u> </u>
P-2	ND	765.00	2.4	NA	5.5				<u> </u>
P-3	682.98	684.89	2.4	NA	29	-			
RW-1	842.56	-	NV	23,8	220	121.75	720.81	127.24	715 32
RW-2	850.47		NA	38.6	401	125,12	725 35	132.81	717.66
RW-3	840.65	_	NA	52.5	340	126 67	713.98	128 31	712 34
RW-4	821,49	-	NA	20.0	301	100.09	721.40	106.18	715.31
RW-5	831.07		NA	29.5	303	110.30	720.77	116 45	714 62
RW-6 (PLW)	858.38	-	NΑ	37.7	267	130.95	727.43	139.11	719 27
RW-7	857.00		NA	14 1	221	129.25	727,75	137.05	719.95

⁻ Depth to Groundwater Not Measured

¹Elevations surveyed from USGS Benchmark by Concord Engineering & Surveying.

²Static water levels measured from the top of easing.

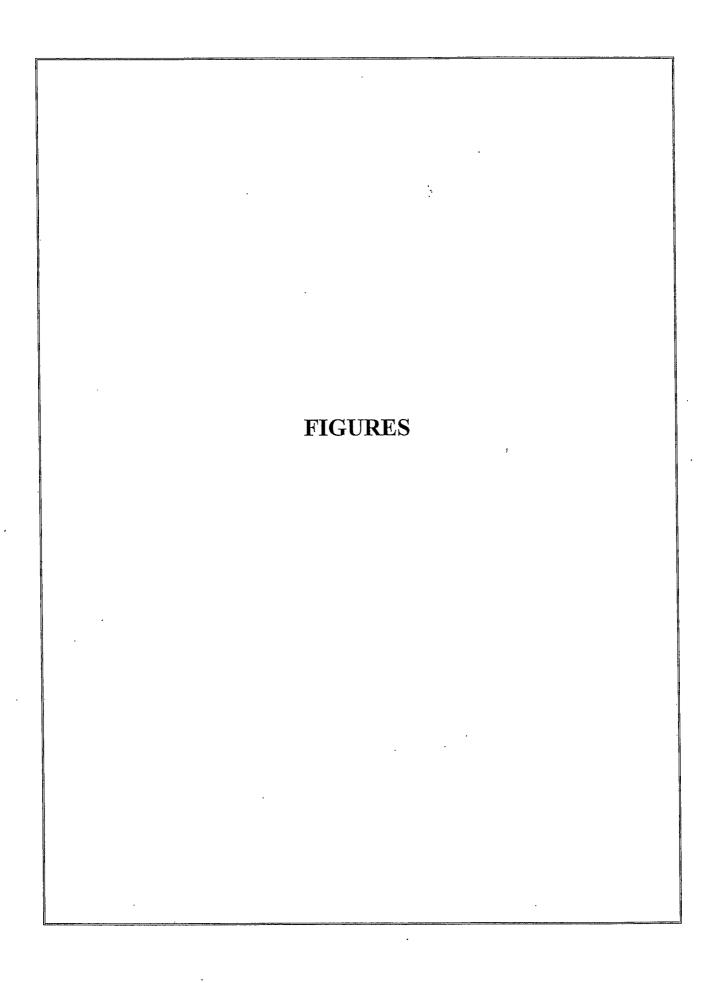
³Water levels measured by Westinghouse Environmental Services.

⁴Water levels measured by BPA Environmental & Engineering, Inc.

⁵Bedrock Well - Open hole from this depth down. Depth of easing determined from geophysical logging.

⁶Water levels measured by Trigon Engineering Consultants, Inc.

⁷MW-ID and MW-IS water level measured 12/15/04


NA - Not applicable MW - Monitoring well

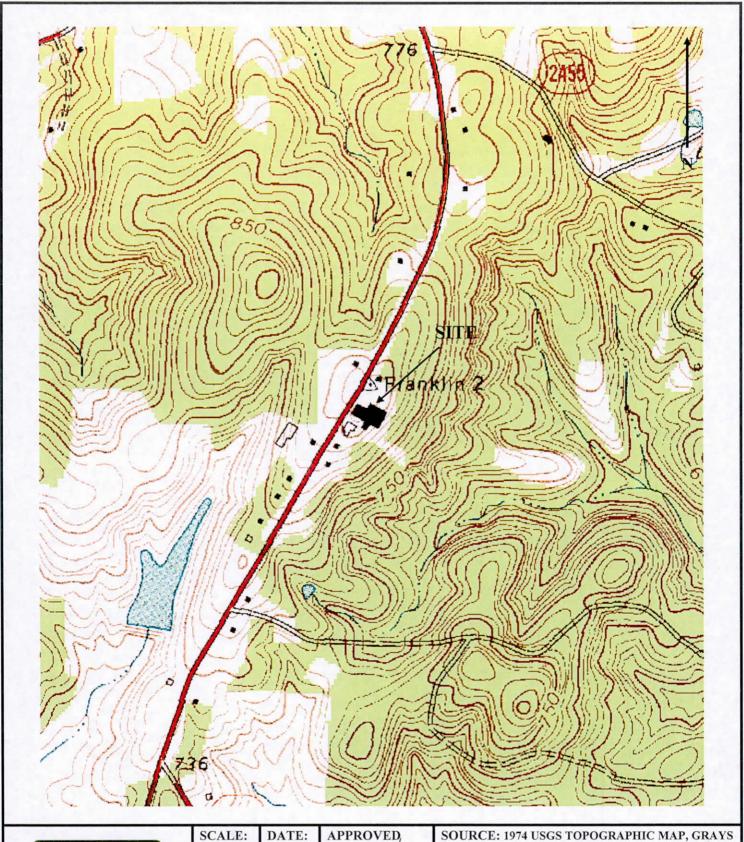

P - Piczometer
RW - Recovery Well
PLW - Also referred as the Parking Lot Well

TABLE 8: MONITORING SCHEDULE

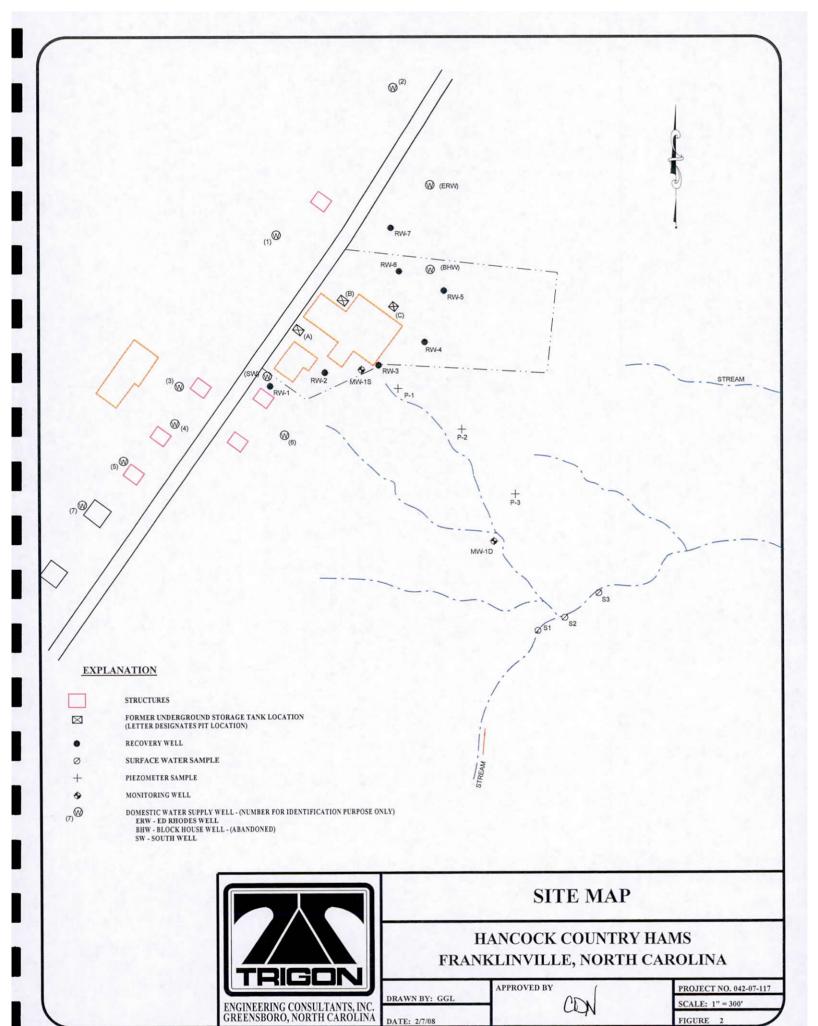
Sample Location/Task	Frequency	Analysis
RW-1 thru RW-7, MW-1S, MW-1D	Quarterly	Method 602 plus MTBE/DIPE and Chloride
Water Wells	Quarterly	Method 602 plus MTBE/DIPE and Chloride
Creek	Quarterly	Method 602 plus MTBE/DIPE and Chloride
Soil Chloride Area	Annually	Standard Method 300 for Chloride

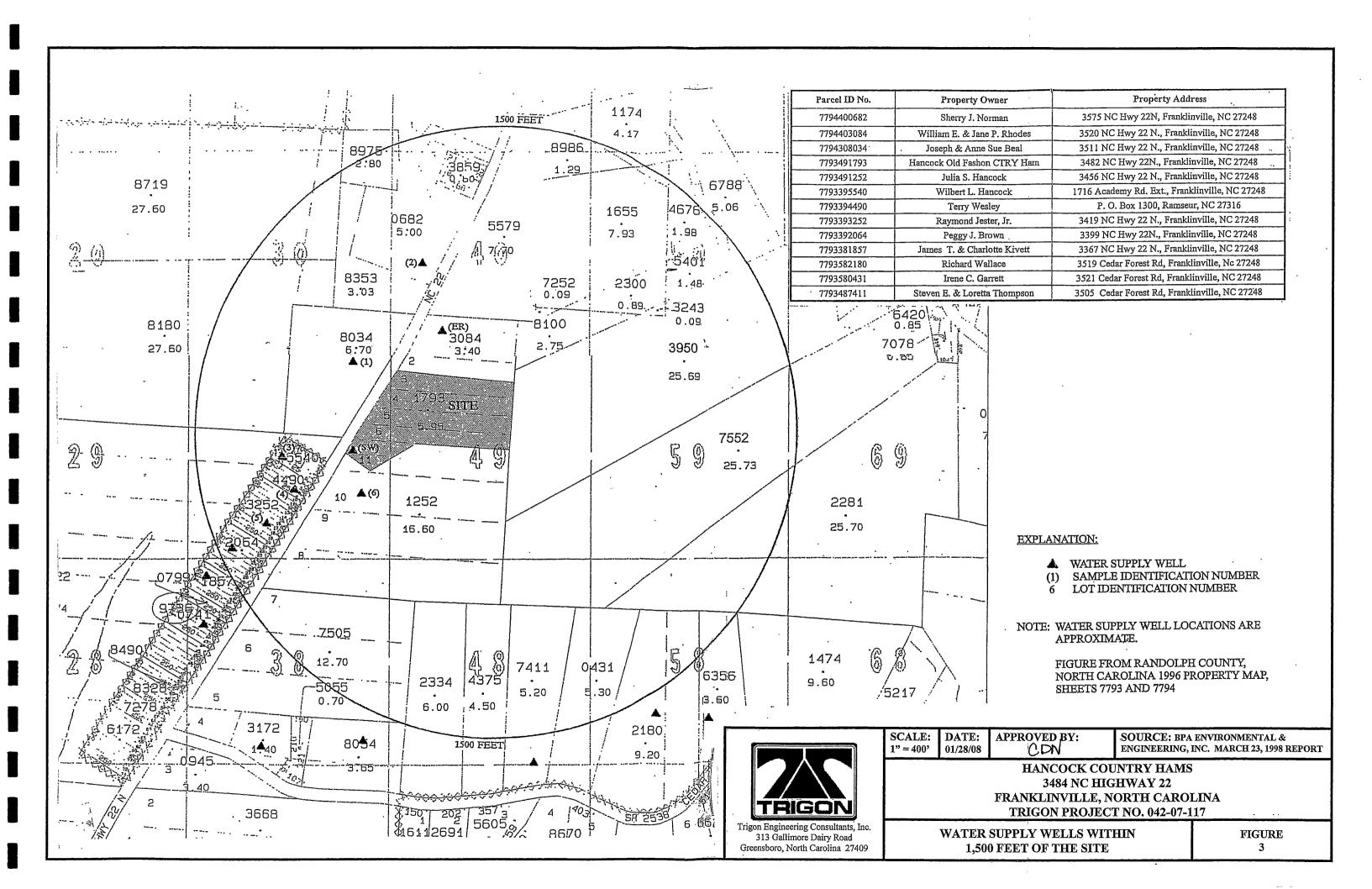
Notes: For site closure, Trigon will analyze all monitoring well/and soil samples by risk based methodology.

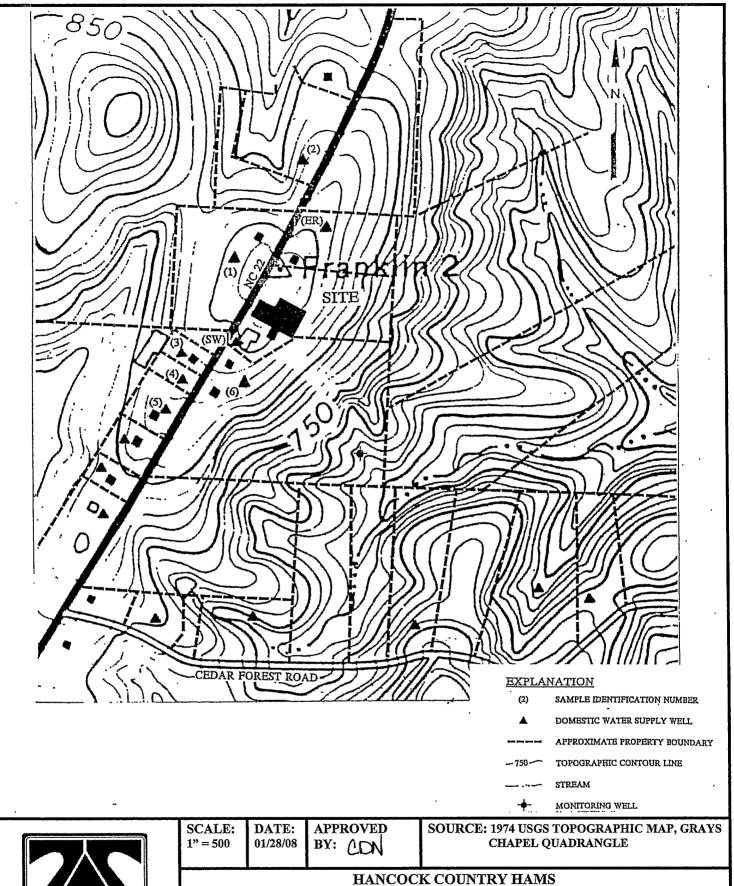
Trigon Engineering Consultants, Inc. 313 Gallimore Dairy Road Greensboro, North Carolina 27409

SCALE: 1" = 1000

01/28/08


BY: CON


SOURCE: 1974 USGS TOPOGRAPHIC MAP, GRAYS CHAPEL QUADRANGLE


HANCOCK COUNTRY HAMS **3484 NC HIGHWAY 22** FRANKLINVILLE, NORTH CAROLINA TRIGON PROJECT NO. 042-07-117

SITE LOCATION MAP

FIGURE

Trigon Engineering Consultants, Inc. 313 Gallimore Dairy Road Greensboro, North Carolina 27409

3484 NC HIGHWAY 22 FRANKLINVILLE, NORTH CAROLINA TRIGON PROJECT NO. 042-07-117

Topographic Relationship of Water Well to the Site

FIGURE

NC HIGHWAY 22 HOUSE EXISTING BUILDING WOODS WOODS **EXPLANATION** O₁₂₀ SAMPLE NUMBER CHLORIDE CONCENTRATION IN PPM

SOIL CHLORIDE CONCENTRATION - 1990

HANCOCK COUNTRY HAMS FRANKLINVILLE, NORTH CAROLINA

APPROVED BY DRAWN BY: GGL

CON

PROJECT NO. 042-07-117

SCALE: 1" = 100'

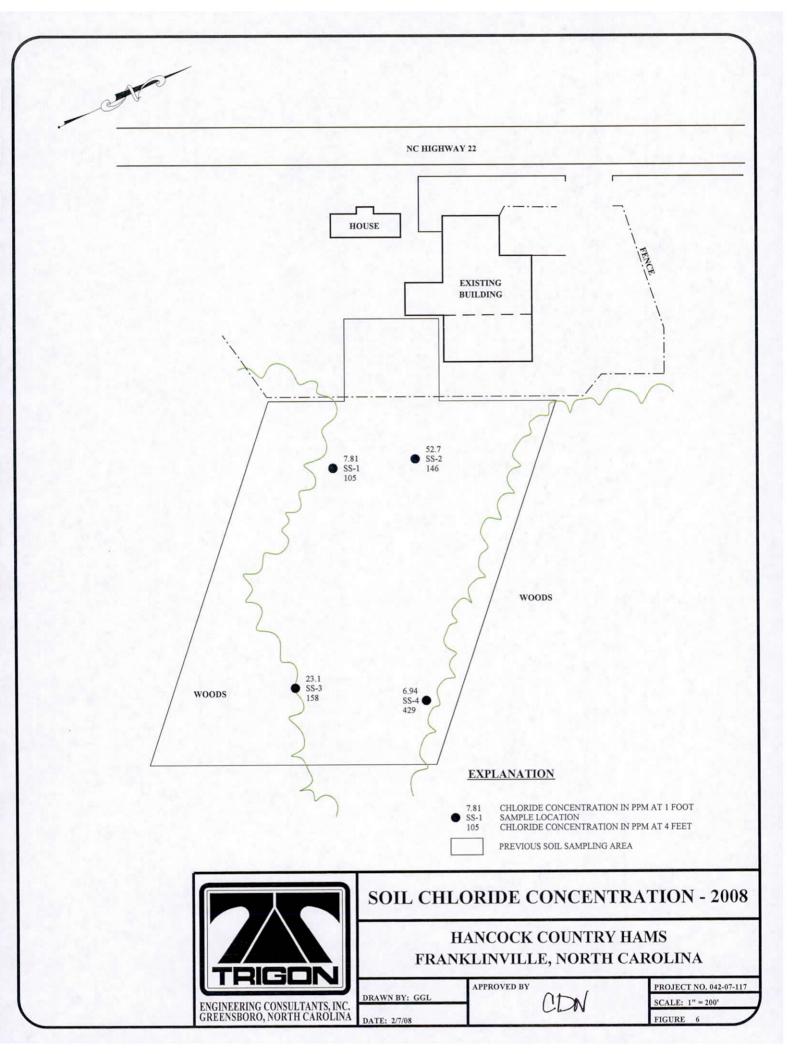


FIGURE 7
CONCENTRATION OF BENZENE
VERSUS TIME IN RW-3

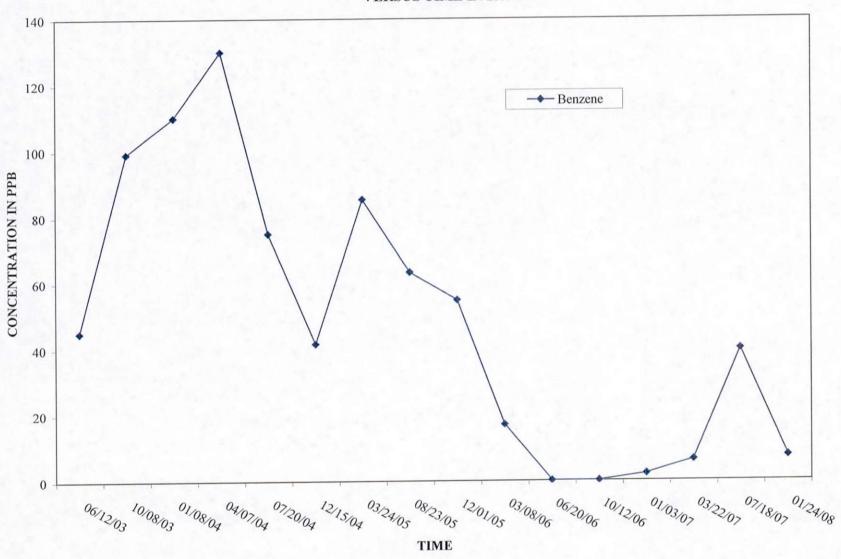


FIGURE 8
CONCENTRATION OF BENZENE
VERSUS TIME IN RW-6 (PLW)

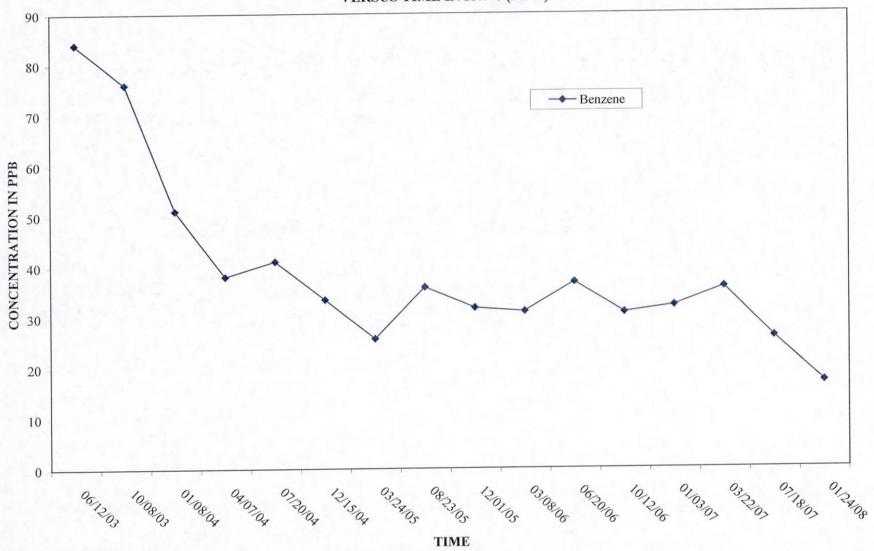


FIGURE 9
CONCENTRATION OF BENZENE, ETHYLBENZENE,
TOLUENE, AND TOTAL XYLENES
VERSUS TIME IN RW-7

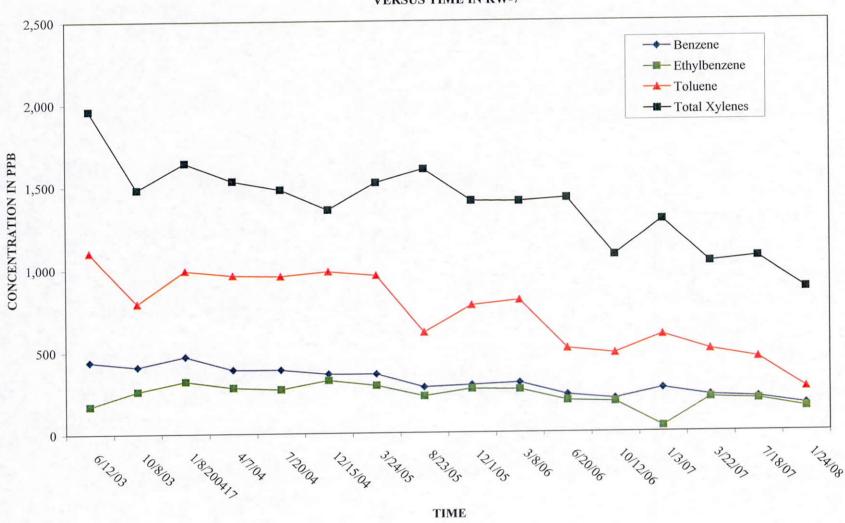


FIGURE 10 CONCENTRATION OF BENZENE VERSUS TIME IN THE SOUTH WELL (SW)

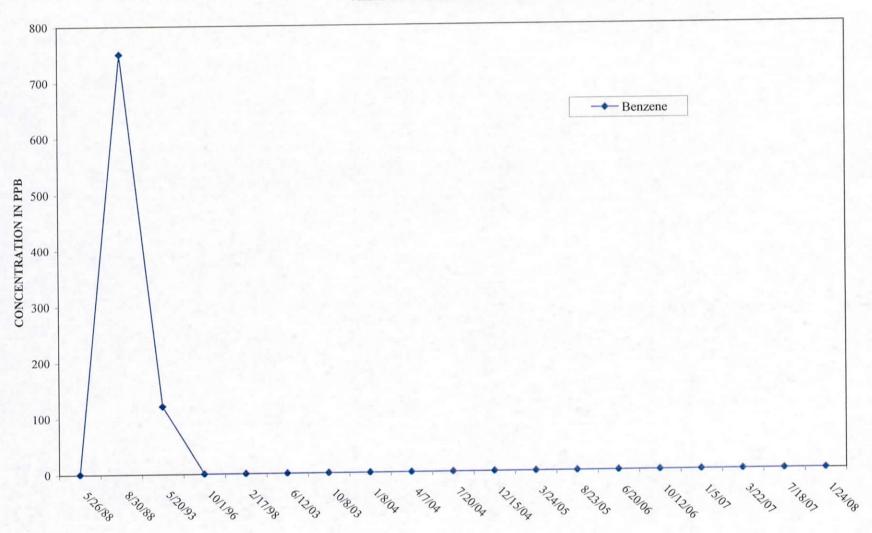


FIGURE 11 CONCENTRATION OF BENZENE VERSUS TIME IN THE ED RHODES WELL (ERW)

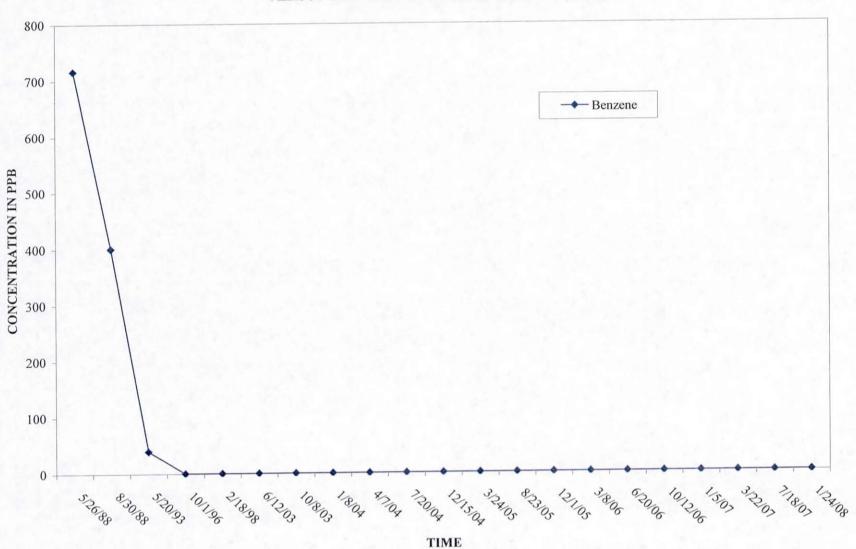
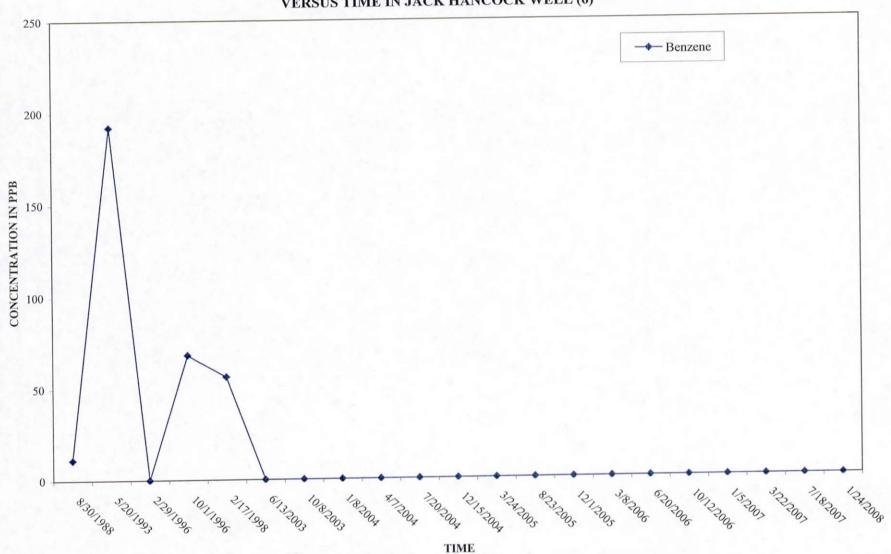
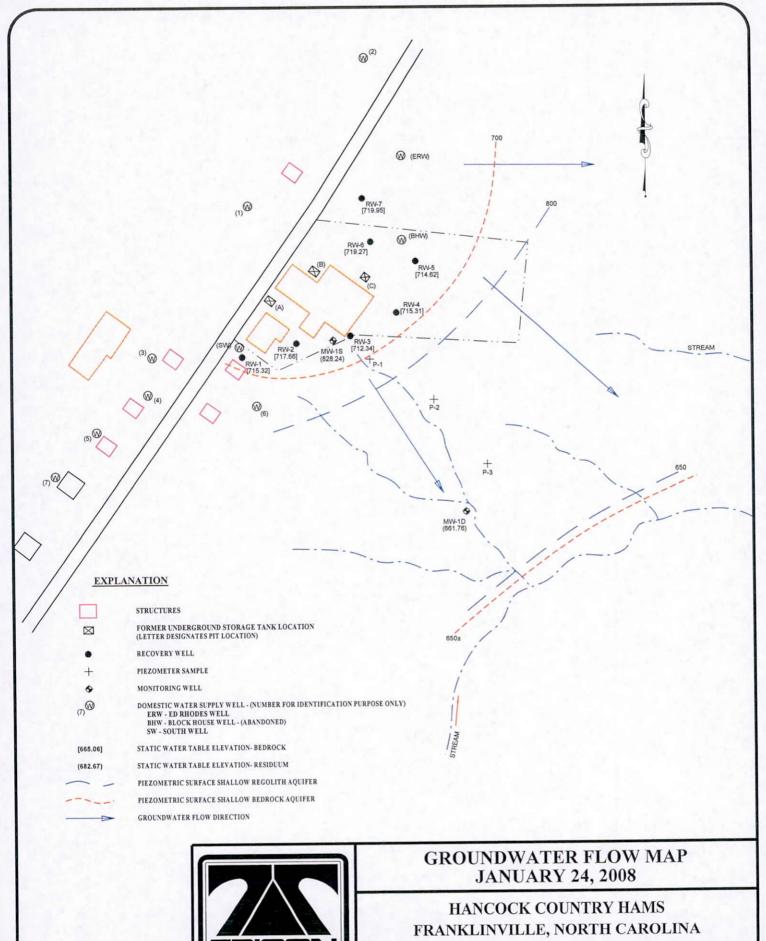
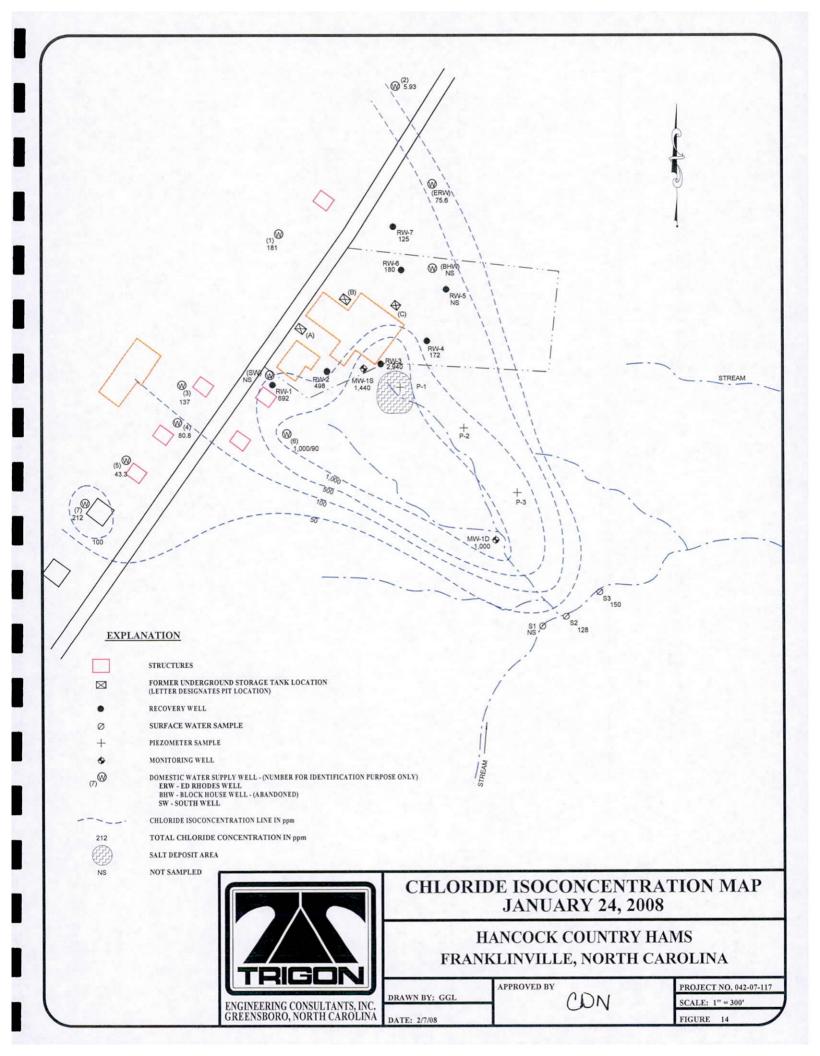
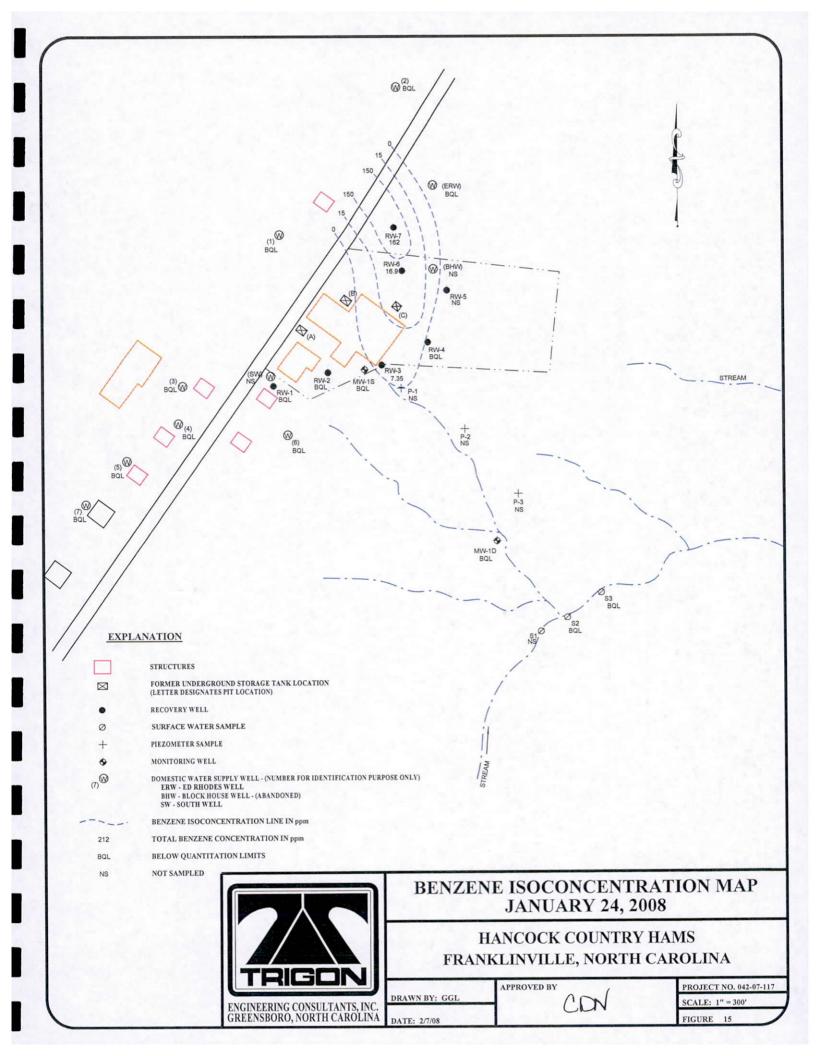
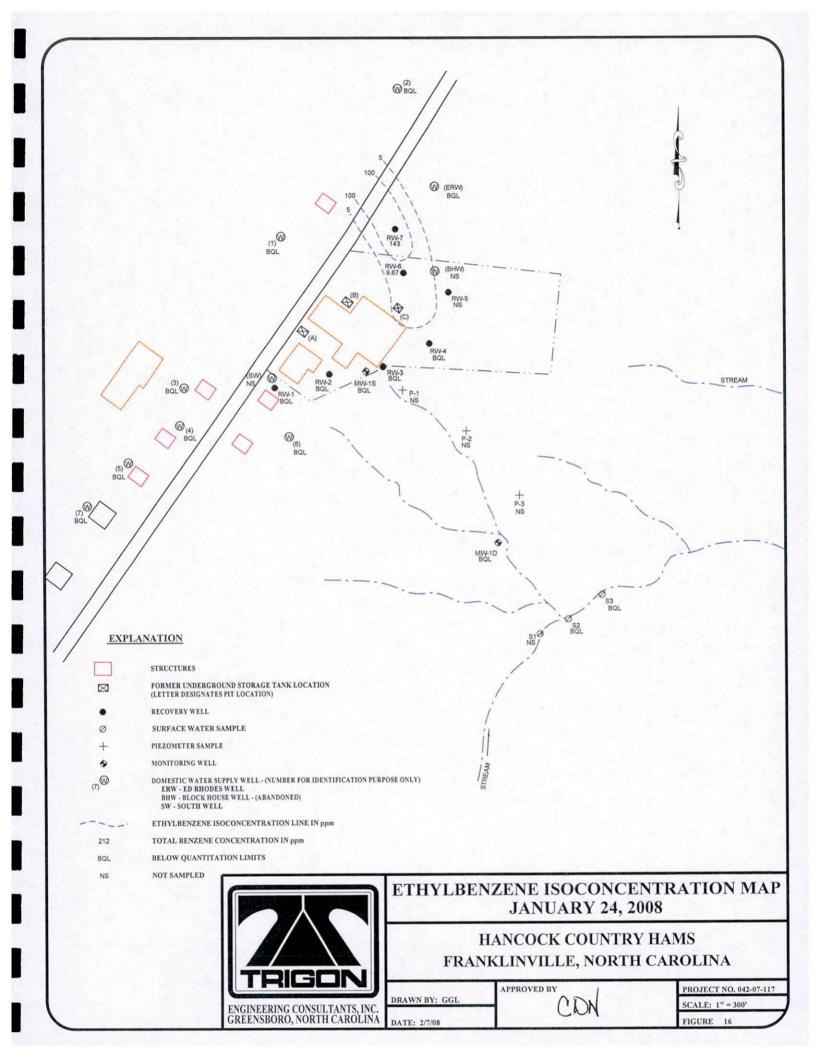
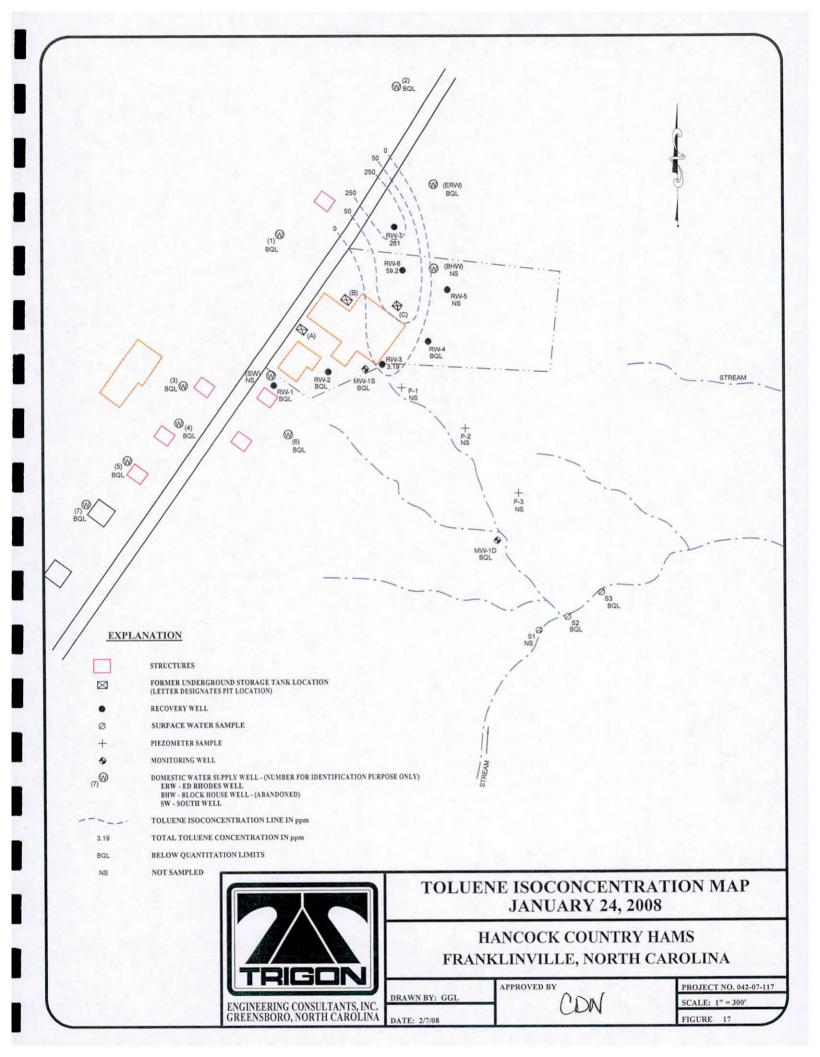




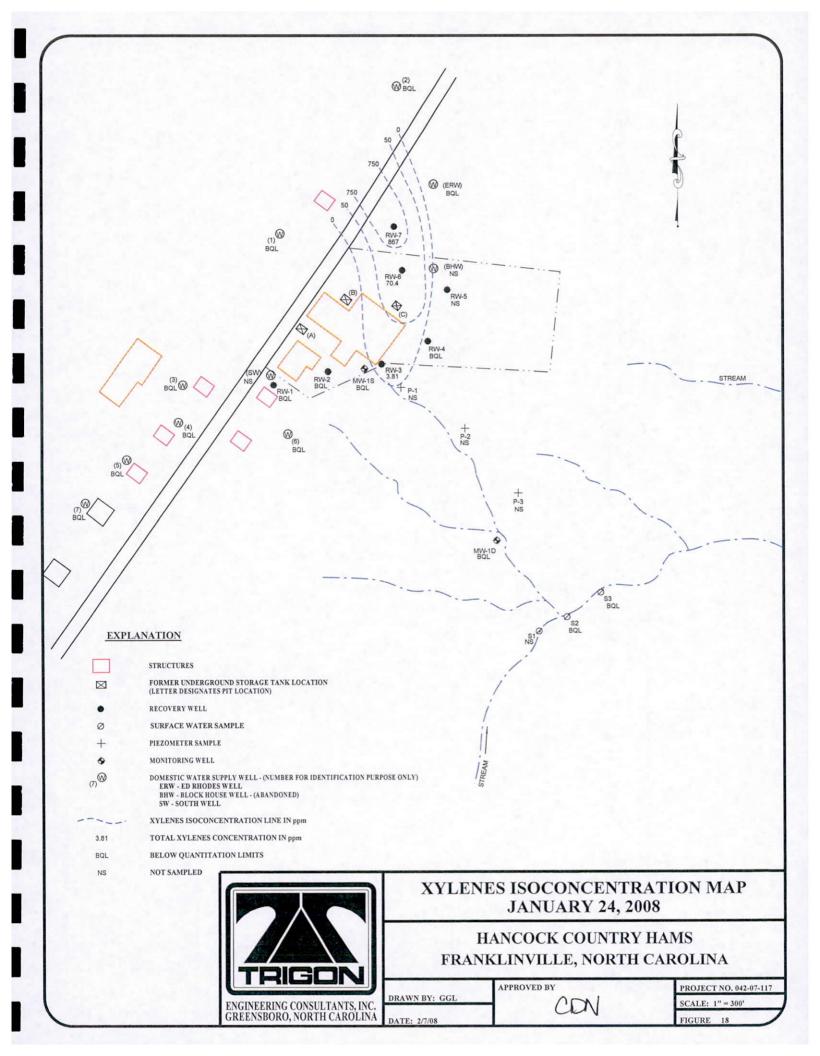
FIGURE 12 CONCENTRATION OF BENZENE VERSUS TIME IN JACK HANCOCK WELL (6)

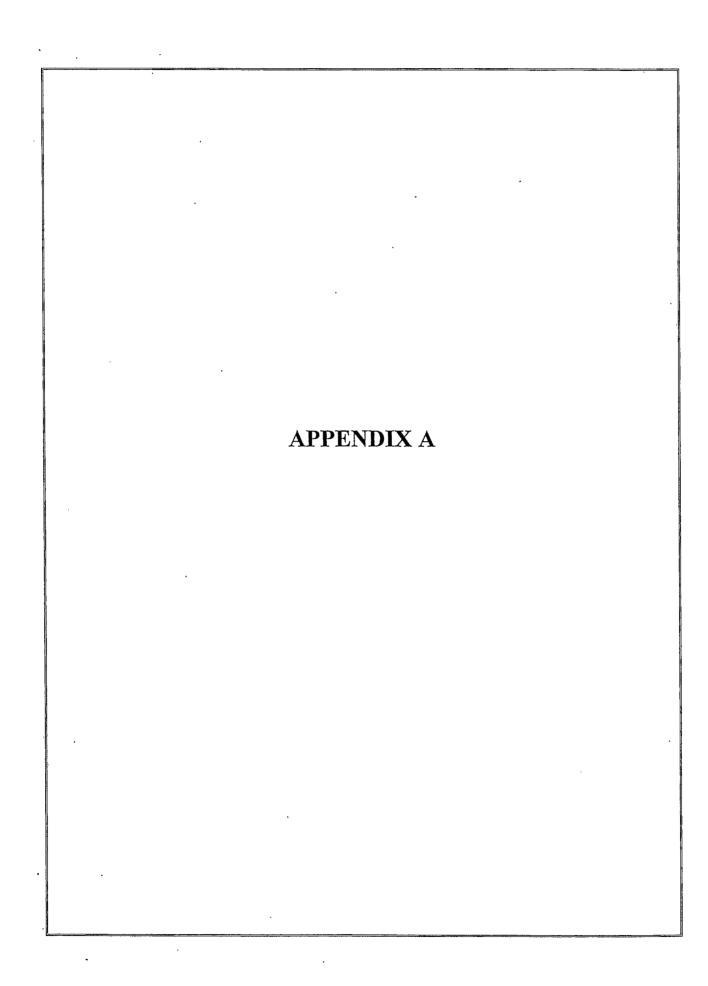

DRAWN BY: GGL


APPROVED BY


PROJECT NO. 042-07-117


SCALE: 1" = 300'


FIGURE 13



North Carolina Department of Environment and Natural Resources

Michael F. Easley, Governor

William G. Ross Jr., Secretary

March 16, 2004

CERTIFIED MAIL 7002 2410 0004 4233 3012 RETURN RECEIPT REQUESTED

Norman B. Fisher Gwaltney of Smithfield, Ltd. P.O. Box 489 Smithfield, VA 23431

Re: Notice of Regulatory Requirements 15A NCAC 2L .0115(f) Risk-Based Assessment and Corrective Action for Petroleum Underground Storage Tanks, Hancock Country Hams, 3484 NC Highway 22 North, Franklinville, Randolph County, NC, Incident 3700, High Risk Classification

Dear Mr. Fisher:

The UST Section of the Division of Waste Management, Winston-Salem Regional Office, has reviewed the Corrective Action Plan dated February 4, 2004 for the above-referenced incident. The UST Section staff agrees with the proposed plan and schedule with the following modifications:

- 1. Water supply wells 1 through 7, SW, BHW, and ERW should also be sampled on a quarterly basis. (January, April, July, and October)
- 2. The monitoring reports should be submitted to the Winston-Salem Regional Office within thirty (30) days of the last day of the monitoring period.
- 3. Any revisions to the sampling schedule will be considered following the receipt and review of the findings from this monitoring activity.

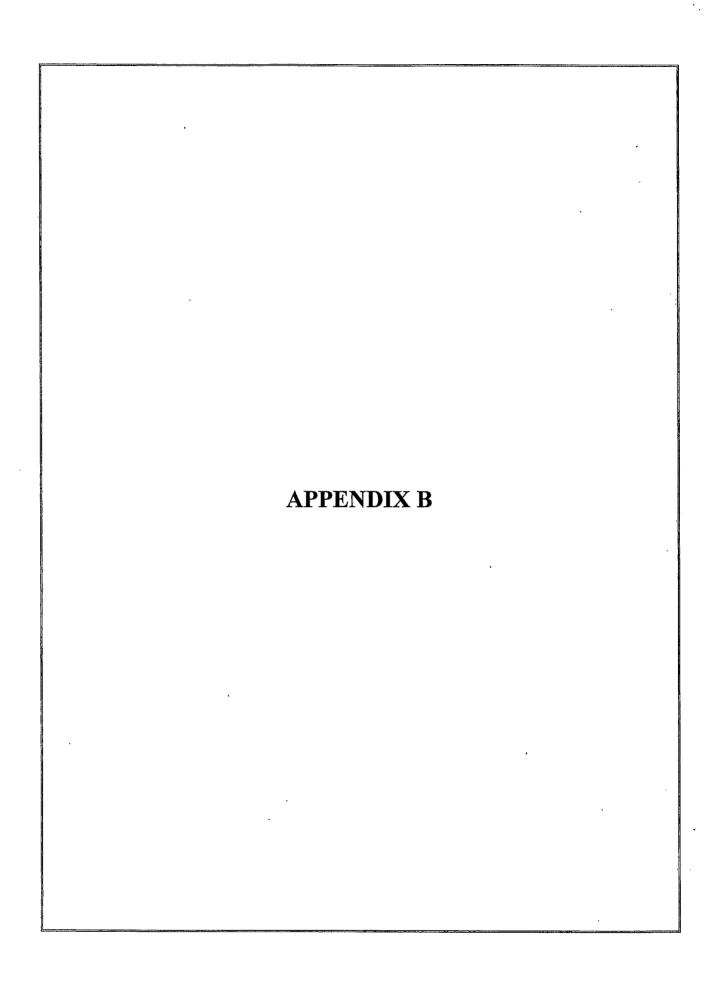
Based on the recommendation of the UST Section staff, I hereby approve the plan and schedule. You should initiate this remedial action within thirty (30) days from the date of receipt of this notice. Please note that it is your responsibility to ensure that any waste generated during implementation of the plan is disposed of in accordance with all applicable county, state and federal laws.

Your prompt attention to the items described herein is required. Failure to comply with the State's rules in the manner and time specified may result in the assessment of civil penalties

If you have any questions regarding the actions that must be taken or the rules mentioned in this notice, please contact Stephen Williams at the letterhead address and/or at (336) 771-4600 extension 283.

Sincerely.

Cindy Rintoul


Regional Supervisor

cc: Mike Walker, Randolph County Health Department

WSRO files

. : --

√John Stewart, Trigon Engineering Consultants

Client: Hancock Hams	
Project Number: 042-07-117	
GROUN	DWATER SAMPLING FIELD DATA
Location: Franklinville	Purge Date: 01/24/08
Source/Well: <u>RW-1</u>	Purge Time: 9:00 to 12:05
Locked: Yes No No	Sample Date: <u>01/24/08</u>
PVC Steel Stainless Stee	1 Sample Time: 12:05
Measuring point description:Top	of Casing Sampled By: JCL/CDN
Water Level and Well Data	
1) Depth to free product from m	neasuring pointft.
2) Depth to water from measuri	ing point <u>127.24</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from m	neasuring point <u>220.30</u> ft.
5) Height of water column (h)	<u>93.06</u> ft.
Well Purging and Sample Collection	<u>on</u>
1) Purge Method	Dedicated pump
2) Sample Method	Dedicated pump
3) Volume of water in well	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x h) x h)
4) Volume of water removed p	rior to sampling <u>850</u> gal.
5) Was well purged DRY?	YES 🗌 NO 🖂
<u>Field Analysis</u>	
1) Temperature	<u> </u>
2) Specific Conductance	<u>μmhos/cm</u>
3) pH	
4) Physical Appearance and O	dor

Client: Hancock Hams	
Project Number: 042-07-117	
GROUNDWATER	SAMPLING FIELD DATA
Location: Franklinville	Purge Date: 01/24/08
Source/Well: RW-1	Purge Time: 9:00 to 12:05
Locked: Yes No No	Sample Date: 01/24/08
PVC Steel Stainless Steel	Sample Time: 12:05
Measuring point description: <u>Top of Casing</u>	Sampled By: JCL/CDN
Water Level and Well Data	
1) Depth to free product from measuring po	ointft.
2) Depth to water from measuring point	<u>127.24</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from measuring po	oint <u>220.30</u> ft.
5) Height of water column (h)	<u>93.06</u> ft.
Well Purging and Sample Collection	
1) Purge Method	Dedicated pump
2) Sample Method	Dedicated pump
3) Volume of water in well	
$ \begin{array}{c} $	<u>139.59</u> gal.
4) Volume of water removed prior to samp	pling <u>850</u> gal.
5) Was well purged DRY?	YES □ NO ⊠
Field Analysis	
1) Temperature	° <u>C</u>
2) Specific Conductance	<u>μmhos/cm</u>
3) pH	
4) Physical Appearance and Odor	

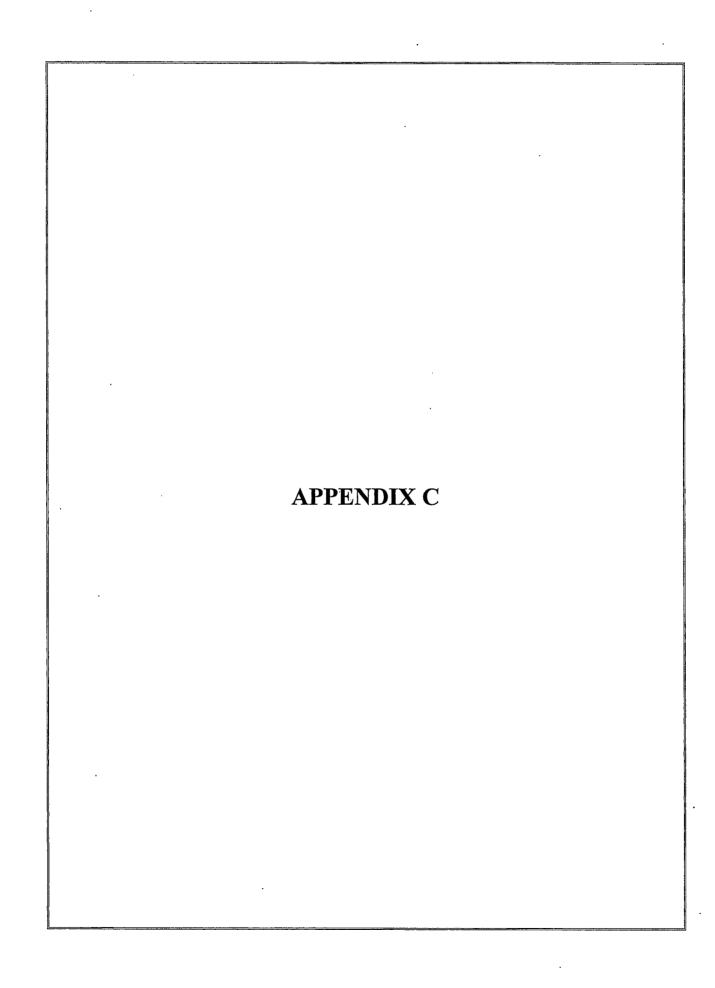
Client: Hancock Hams	
Project Number: 042-07-117	
GROUNDWATER S	SAMPLING FIELD DATA
Location: Franklinville	Purge Date: 01/24/08
Source/Well: RW-2	Purge Time: 9:00 to 14:15
Locked: Yes No No	Sample Date: <u>01/24/08</u>
PVC Steel Stainless Steel	Sample Time: 14:15
Measuring point description: Top of Casing	Sampled By: JCL/CDN
Water Level and Well Data	
1) Depth to free product from measuring po	
2) Depth to water from measuring point	<u>132.81</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from measuring po	int <u>401.8</u> ft.
5) Height of water column (h)	<u>268.99</u> ft.
Well Purging and Sample Collection	
1) Purge Method	Dedicated pump
2) Sample Method	Dedicated pump
3) Volume of water in well	
$ \begin{array}{c} $	<u>403.48</u> gal.
4) Volume of water removed prior to samp	oling <u>656</u> gal.
5) Was well purged DRY?	YES 🗌 NO 🖾
Field Analysis	
1) Temperature	<u>°C</u>
2) Specific Conductance	<u>μmhos/cm</u>
3) pH	
4) Physical Appearance and Odor	
5) Other	

Client: Hancock Hams	
Project Number: <u>042-07-117</u>	
GROUNDWATER	SAMPLING FIELD DATA
Location: Franklinville	Purge Date: 01/24/08
Source/Well: RW-3	Purge Time: 9:00 to 14:10
Locked: Yes No No	Sample Date: <u>01/24/08</u>
PVC Steel Stainless Steel	Sample Time: 14:10
Measuring point description: Top of Casing	Sampled By: <u>JCL/CDN</u>
Water Level and Well Data	
1) Depth to free product from measuring p	pointft.
2) Depth to water from measuring point	<u>128.31</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from measuring p	point <u>340.1</u> ft.
5) Height of water column (h)	<u>211.79</u> ft.
Well Purging and Sample Collection	
1) Purge Method	Dedicated pump
2) Sample Method	Dedicated pump
3) Volume of water in well	
$ \begin{array}{c} $	<u>317.69</u> gal.
4) Volume of water removed prior to san	apling <u>953</u> gal.
5) Was well purged DRY?	YES ☐ NO ⊠
Field Analysis	
1) Temperature	<u>°C</u>
2) Specific Conductance	μmhos/em
3) pH	
Physical Appearance and Odor	
5) Other *Well pump was malfunctioning	19

Client: Hancock Hams	
Project Number: 042-07-117	
GROUNDWATER SA	MPLING FIELD DATA
Location: Franklinville	Purge Date: 01/24/08
Source/Well: RW-4	Purge Time: 9:00 to 13:40
Locked: Yes No No	Sample Date: <u>01/24/08</u>
PVC Steel Stainless Steel	Sample Time: 13:40
Measuring point description: Top of Casing	Sampled By: <u>JCL/CDN</u>
Water Level and Well Data	
1) Depth to free product from measuring point	ft.
2) Depth to water from measuring point	<u>106.8</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from measuring point	t <u>301.50</u> ft.
5) Height of water column (h)	<u>194.7</u> ft.
Well Purging and Sample Collection	
1) Purge Method	Dedicated pump
2) Sample Method	Dedicated pump
3) Volume of water in well	
$ \begin{array}{c} $	<u>292.05</u> gal.
4) Volume of water removed prior to sampling	ng <u>1,290</u> gal.
5) Was well purged DRY?	YES 🗌 NO 🖂
Field Analysis	
1) Temperature	<u>°C</u>
2) Specific Conductance	<u>μmhos/cm</u>
3) pH	
4) Physical Appearance and Odor	
5) Other	

Client: Hancock Hams	
Project Number: 042-07-117	
GROUNDWATER S	AMPLING FIELD DATA
Location: Franklinville	Purge Date: 01/24/08
Source/Well: RW-5	Purge Time: to
Locked: Yes No No	Sample Date: <u>01/24/08</u>
PVC Steel Stainless Steel	Sample Time: Not Sampled
Measuring point description: <u>Top of Casing</u>	Sampled By: JCL/CDN
Water Level and Well Data	
1) Depth to free product from measuring poi	ntft.
2) Depth to water from measuring point	<u>116.45</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from measuring poi	nt <u>303.00</u> ft.
5) Height of water column (h)	<u>186.55</u> ft.
Well Purging and Sample Collection	
1) Purge Method	Dedicated pump
2) Sample Method	Dedicated pump
3) Volume of water in well	
1" well (v = 0.041 x h) 2" well (v = 0.163 x h) 4" well (v = 0.651 x h) $\stackrel{\frown}{\boxtimes}$ 6" well (v = 1.5 x h)	gal.
4) Volume of water removed prior to sample	ing <u>Pump malfunction</u> gal.
5) Was well purged DRY?	YES 🗌 NO 🔀
Field Analysis	
1) Temperature	°C
2) Specific Conductance	<u>μmhos/cm</u>
3) pH	
4) Other *Well pump was malfunctioning	

Client: Hancock Hams	
Project Number: 042-07-117	
GROUNDWATER SAMPLING F	TELD DATA
Togetion, Engaldingillo	Purge Date: 01/24/08
Location: Franklinville	Purge Time: 9:00 to 11:55
Source/Well: RW-6 Locked: Yes No	Sample Date: 01/24/08
	•
PVC Steel Stainless Steel	Sample Time: 11:55
Measuring point description: <u>Top of Casing</u>	Sampled By: <u>JCL/CDN</u>
Water Level and Well Data	
Depth to free product from measuring point	ft.
2) Depth to water from measuring point	<u>139.11</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from measuring point	<u>267.40</u> ft.
5) Height of water column (h)	<u>128.29</u> ft.
Well Purging and Sample Collection	
1) Purge Method	Dedicated pump
2) Sample Method	Dedicated pump
3) Volume of water in well	
1" well (v = 0.041 x h) 2" well (v = 0.163 x h) 4" well (v = 0.651 x h) 6" well (v = 1.5 x h)	<u>195.44</u> gal.
4) Volume of water removed prior to sampling	<u>1,022</u> gal.
5) Was well purged DRY?	YES 🗌 NO 🖂
<u>Field Analysis</u>	
1) Temperature	<u> </u>
Specific Conductance	<u>μmhos/cm</u>
3) pH	
Physical Appearance and Odor	
5) Other	


Client: Hancock Hams	
Project Number: <u>042-07-117</u>	
GROUNDWATER SAMPL	ING FIELD DATA
Location: Franklinville	Purge Date: 01/24/08
Source/Well: RW-7	Purge Time: 9:00 to 11:55
Locked: Yes 🛛 No 🗌	Sample Date: 01/24/08
PVC Steel Stainless Steel	Sample Time: 11:55
Measuring point description: <u>Top of Casing</u>	Sampled By: JCL/CDN
Water Level and Well Data	
1) Depth to free product from measuring point	ft.
2) Depth to water from measuring point	<u>137.05</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from measuring point	<u>221.90</u> ft.
5) Height of water column (h)	<u>84.85</u> ft.
Well Purging and Sample Collection	
1) Purge Method	Dedicated pump
2) Sample Method	Dedicated pump
3) Volume of water in well	
$ \begin{array}{cccc} & 1" \text{ well } \dots (v = 0.041 \text{ x h}) \\ & 2" \text{ well } \dots (v = 0.163 \text{ x h}) \\ & 4" \text{ well } \dots (v = 0.651 \text{ x h}) \\ & \otimes 6" \text{ well } \dots (v = 1.5 \text{ x h}) \end{array} $	<u>127.28</u> gal.
4) Volume of water removed prior to sampling	<u>742</u> gal.
5) Was well purged DRY?	YES 🗌 NO 🔀
Field Analysis	
1) Temperature	°C
2) Specific Conductance	<u>μmhos/cm</u>
3) pH	
4) Physical Appearance and Odor	
5) Other	

Client: Hancock Hams	and the second s
Project Number: 042-07-117	
GROUNDWATER SAMPLIN	IG FIELD DATA
Location: Franklinville	Purge Date: 01/24/08
Source/Well: MW-1D	Purge Time: 9:15 to 9:50
Locked: Yes No 🖂	Sample Date: 01/24/08
PVC Steel Stainless Steel	Sample Time: 9:50
Measuring point description:	Sampled By: JCL/CDN
Water Level and Well Data	
1) Depth to free product from measuring point	ft.
2) Depth to water from measuring point	<u>12.90</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from measuring point	<u></u>
5) Height of water column (h)	<u>59.1</u> ft.
Well Purging and Sample Collection 1) Purge Method	Disposable boiler
2) Sample Method	Disposable boiler
3) Volume of water in well	
 1" well (v = 0.041 x h) 2" well (v = 0.163 x h) 4" well (v = 0.651 x h) 6" well (v = 1.5 x h) 	88.65 gal. 100.0 gal.
5) Was well purged DRY?	YES 🗌 NO 🛚
Field Analysis	
1) Temperature	<u>°C</u>
2) Specific Conductance	<u>μmhos/cm</u>
3) pH	
4) Physical Appearance and Odor	
5) Other	

Client: Hancock Hams	
Project Number: 042-07-117	
GROUNDWATER S.	AMPLING FIELD DATA
Location: Franklinville	Purge Date: 01/24/08
Source/Well: MW-1S	Purge Time: 10:05 to 10:25
Locked: Yes 🛛 No 🗌	Sample Date: 01/24/08
PVC Steel Stainless Steel	Sample Time: 10:25
Measuring point description:Top of Casing	Sampled By: <u>JCL/CDN</u>
Water Level and Well Data	
1) Depth to free product from measuring point	ft.
2) Depth to water from measuring point	<u>14.6</u> ft.
3) Thickness of free product	ft.
4) Depth to well bottom from measuring point	nt <u>15.00</u> ft.
5) Height of water column (h)	<u>0.40</u> ft.
Well Purging and Sample Collection	
1) Purge Method	Disposable bailer
2) Sample Method	Disposable bailer
3) Volume of water in well	
1" well (v = 0.041 x h) 2" well (v = 0.163 x h) 4" well (v = 0.651 x h) 6" well (v = 1.5 x h)	<u>0.065</u> gal.
4) Volume of water removed prior to sampli	ng <u>0.25</u> gal.
5) Was well purged DRY?	YES □ NO ⊠
Field Analysis	
1) Temperature	°C
2) Specific Conductance	µmhos/cm
3) pH	
4) Physical Appearance and Odor dark gre	y color, very turbid
5) Other	

Erin Greene Trigon Engineering PO Box 18846 Greensboro, NC 27419

Report Number: G118-507 Client Project:

042-07-117

Dear Erin Greene,

Enclosed are the results of the analytical services performed under the referenced project. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Lori Lockamy at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS Environmental Services for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS Environmental Services, Inc.

Project Manager Date Lori Lockamy

SGS Environmental Services

5500 Business Dr. Wilmington, NC 28405 t 910.350.1903 f 910.350.1557 www.us.sgs.com

List of Reporting Abbreviations and Data Qualifiers

B = Compound also detected in batch blank

BQL = Below Quantitation Limit (RL or MDL)

DF = Dilution Factor

Dup = Duplicate

D = Detected, but RPD is > 40% between results in dual column method.

E = Estimated concentration, exceeds calibration range.

J = Estimated concentration, below calibration range and above MDL

LCS(D) = Laboratory Control Spike (Duplicate)

MDL = Method Detection Limit

MS(D) = Matrix Spike (Duplicate)

PQL = Practical Quantitation Limit

RL = Reporting Limit

RPD = Relative Percent Difference

mg/kg = milligram per kilogram, ppm, parts per million

ug/kg = micrograms per kilogram, ppb, parts per billion

mg/L = milligram per liter, ppm, parts per million

ug/L = micrograms per liter, ppb, parts per billion

% Rec = Percent Recovery

% soilds = Percent Solids

Special Notes:

- 1) Metals and mercury samples are digested with a hot block, see the standard operating procedure document for details.
- 2) Uncertainty for all reported data is less than or equal to 30 percent.

Client Sample ID: **RW-1**Client Project ID: 042-07-117
Lab Sample ID: G118-507-1B
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 12:05

Received Date: 26-Jan-08

Matrix: WATER

Resu	ilte	hv	602
UGSI	มเอ	NΛ	002

PARAMETER	<u>Result</u>	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	01-Feb-08 16:02
Diisopropyl ether (D	IPE) BQL	1.00	UG/L	1	01-Feb-08 16:02
Ethylbenzene	BQL	1.00	UG/L	1	01-Feb-08 16:02
Methyl-tert butyl eth	er (MTBE) BQL	2.00	UG/L	1	01-Feb-08 16:02
Toluene	BQL	1.00	UG/L	1	01-Feb-08 16:02
m/p-Xylene	BQL	2.00	UG/L	1	01-Feb-08 16:02
o-Xylene	BQL	2.00	UG/L	1	01-Feb-08 16:02
Surrogates					
Trifluorotoluene	94.9	85-115	%	1	01-Feb-08 16:02

Batch Information

Analytical Batch: 3020108 Analytical Method: 602 Instrument: GC3 Analyst: RSB Prep Batch:

Prep Method: 5030 Prep Date/Time: Initial Prep Wt./Vol.: 5.00 Prep Extract Vol: 5

Client Sample ID: **RW-1** Client Project ID: 042-07-117 Lab Sample ID: G118-507-1D Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 692
 150

 Units
 DF
 Date Analyzed

 MG/L
 500
 30-Jan-08 17:16

Batch Information

Analytical Batch: 013008 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013008 Prep Method: 300.0

Prep Date/Time: 30-Jan-08 17:16

Initial Prep Wt./Vol.: Prep Extract Vol:

Client Sample ID: **RW-2**Client Project ID: 042-07-117
Lab Sample ID: G118-507-2A
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 14:15

Received Date: 26-Jan-08

Matrix: WATER

Results by 602

<u>PARAMETER</u>	<u>Result</u>	<u>RL/CL</u>	· <u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	30-Jan-08 13:25
Diisopropyl ether (DIPE)	2.15	1.00	UG/L	1	30-Jan-08 13:25
Ethylbenzene	BQL	1.00	UG/L	1	30-Jan-08 13:25
Methyl-tert butyl ether (MTBE	E) BQL	2.00	UG/L	1	30-Jan-08 13:25
Toluene	BQL	1.00	UG/L	1	30-Jan-08 13:25
m/p-Xylene	BQL	2.00	UG/L	1	30-Jan-08 13:25
o-Xylene	BQL	2.00	UG/L	1	30-Jan-08 13:25
Surrogates					
Trifluorotoluene	97.9	85-115	%	1	30-Jan-08 13:25

Batch Information

Analytical Batch: 1013008 Analytical Method: 602 Instrument: GC1 Analyst: RSB

Client Sample ID: **RW-2**Client Project ID: 042-07-117
Lab Sample ID: G118-507-2D
Lab Project ID: G118-507

Collection Date: 24-Jan-08 0:00

Print Date: 2/5/2008

Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 498
 30.0

<u>Units</u> MG/L <u>DF</u> 100 Date Analyzed 30-Jan-08 12:25

Batch Information

Analytical Batch: 013008 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013008 Prep Method: 300.0

Prep Date/Time: 30-Jan-08 12:25

Client Sample ID: **RW-3**Client Project ID: 042-07-117
Lab Sample ID: G118-507-3A
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 14:10

Received Date: 26-Jan-08

Matrix: WATER

Results by 602

FARAMETER Result RL/CL Units DF Benzene 7.35 1.00 UG/L 1 Diisopropyl ether (DIPE) 5.24 1.00 UG/L 1	<u>Date Analyzed</u> 01-Feb-08 16:35 01-Feb-08 16:35
Diisopropyl ether (DIPE) 5.24 1.00 UG/L 1	01-Feb-08 16:35
	01-160-00 10.00
Ethylbenzene BQL 1,00 UG/L 1	01-Feb-08 16:35
Methyl-tert butyl ether (MTBE) BQL 2.00 UG/L 1	01-Feb-08 16:35
Toluene 3.19 1.00 UG/L 1	01-Feb-08 16:35
m/p-Xylene 3.81 2.00 UG/L 1	01-Feb-08 16:35
o-Xylene BQL 2.00 UG/L 1	01-Feb-08 16:35
Surrogates	
Trifluorotoluene 98.6 85-115 % 1	01-Feb-08 16:35

Batch Information

Analytical Batch: 3020108 Analytical Method: 602 Instrument: GC3 Analyst: RSB

Prep Batch:

Client Sample ID: RW-3 Client Project ID: 042-07-117 Lab Sample ID: G118-507-3D Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

RL/CL **PARAMETER** Result Chloride 2940 300

DF Date Analyzed <u>Units</u> 1000 31-Jan-08 10:49 MG/L

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0 Instrument: IC1

Analyst: PSW

Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 10:49

Client Sample ID: **RW-4**Client Project ID: 042-07-117
Lab Sample ID: G118-507-4A
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 13:40 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

PARAMETER	<u>Result</u>	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	30-Jan-08 13:58
Diisopropyl ether (DIPE	1.49	1.00	UG/L	1	30-Jan-08 13:58
Ethylbenzene	BQL	1.00	UG/L	1	30-Jan-08 13:58
Methyl-tert butyl ether (MTBE) BQL	2.00	UG/L	1	30-Jan-08 13:58
Toluene	BQL	1.00	UG/L	1	30-Jan-08 13:58
m/p-Xylene	BQL	2.00	UG/L	1	30-Jan-08 13:58
o-Xylene	BQL	2.00	UG/L	1	30-Jan-08 13:58
Surrogates					
Trifluorotoluene	98.3	85-115	%	1	30-Jan-08 13:58

Batch Information

Analytical Batch: 1013008 Analytical Method: 602 Instrument: GC1 Analyst: RSB Prep Batch: Prep Method: 5030 Prep Date/Time:

Client Sample ID: **RW-4**Client Project ID: 042-07-117
Lab Sample ID: G118-507-4D
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

PARAMETER Chloride Result 172 RL/CL 30.0 <u>Units</u> MG/L <u>DF</u> 100

Date Analyzed 31-Jan-08 11:25

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 11:25

Client Sample ID: **RW-6**Client Project ID: 042-07-117
Lab Sample ID: G118-507-5A
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 11:55 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

<u>PARAMETER</u>	<u>Result</u>	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	16.9	2.00	UG/L	2	04-Feb-08 14:13
Diisopropyl ether (DIPE)	3.01	2.00	UG/L	2	04-Feb-08 14:13
Ethylbenzene	9.67	2.00	UG/L	2	04-Feb-08 14:13
Methyl-tert butyl ether (MTBE)	BQL	4.00	UG/L	2	04-Feb-08 14:13
Toluene	59.2	2.00	UG/L	2	04-Feb-08 14:13
m/p-Xylene	34.2	4.00	UG/L	2	04-Feb-08 14:13
o-Xylene	36.2	4.00	UG/L	2	04-Feb-08 14:13
Surrogates					
Trifluorotoluene	97.9	85-115	%	2	04-Feb-08 14:13

Batch Information

Analytical Batch: 3020408 Analytical Method: 602 Instrument: GC3 Analyst: RSB

Client Sample ID: **RW-6**Client Project ID: 042-07-117
Lab Sample ID: G118-507-5D
Lab Project ID: G118-507

Print Date: 2/5/2008

Date Analyzed

31-Jan-08 11:37

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL
 Units
 DF

 Chloride
 180
 30.0
 MG/L
 100

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 11:37

Client Sample ID: **RW-7** Client Project ID: 042-07-117 Lab Sample ID: G118-507-6A Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 11:55

Received Date: 26-Jan-08

Matrix: WATER

Results by 602

	<u>PARAMETER</u>	<u>Result</u>	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
	Benzene	162	16.0	UG/L	16	30-Jan-08 17:17
	Diisopropyl ether (DIPE)	27.0	16.0	UG/L	16	30-Jan-08 17:17
	Ethylbenzene	143	16.0	UG/L	16	30-Jan-08 17:17
	Methyl-tert butyl ether (MTBE)	BQL	32.0	UG/L	16	30-Jan-08 17:17
	Toluene	261	16.0	UG/L	16	30-Jan-08 17:17
	m/p-Xylene	354	32.0	UG/L	16	30-Jan-08 17:17
	o-Xylene	513	32.0	UG/L	16	30-Jan-08 17:17
Su	rrogates					
	Trifluorotoluene	99.1	85-115	%	16	30-Jan-08 17:17

Batch Information

Analytical Batch: 1013008 Analytical Method: 602 Instrument: GC1 Analyst: RSB Prep Batch:

Prep Method: 5030
Prep Date/Time:

Client Sample ID: **RW-7**Client Project ID: 042-07-117
Lab Sample ID: G118-507-6D
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 125
 30.0

 Units
 DF
 Date Analyzed

 MG/L
 100
 31-Jan-08 11:49

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 11:49

Client Sample ID: **MW-1S**Client Project ID: 042-07-117
Lab Sample ID: G118-507-7A
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 10:25

Received Date: 26-Jan-08

Matrix: WATER

Results by 602

<u>PARAMETER</u>	Result	<u>RL/CL</u>	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	30-Jan-08 14:31
Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	30-Jan-08 14:31
Ethylbenzene	BQL	1.00	UG/L	1	30-Jan-08 14:31
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	30-Jan-08 14:31
Toluene	BQL	1.00	UG/L	1	30-Jan-08 14:31
m/p-Xylene	BQL	2.00	UG/L	1	30-Jan-08 14:31
o-Xylene	BQL	2.00	UG/L	1	30-Jan-08 14:31
Surrogates					
Trifluorotoluene	99	85-115	%	1	30-Jan-08 14:31

Batch Information

Analytical Batch: 1013008 Analytical Method: 602 Instrument: GC1 Analyst: RSB Prep Batch:

Client Sample ID: **MW-1S**Client Project ID: 042-07-117
Lab Sample ID: G118-507-7D
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

PARAMETER Chloride Result 1440 RL/CL 300 <u>Units</u> MG/L <u>DF</u> 1000 Date Analyzed 31-Jan-08 12:01

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 12:01

Client Sample ID: **MW-1D**Client Project ID: 042-07-117
Lab Sample ID: G118-507-8A
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 9:50 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

<u>PARAMETER</u>	<u>Result</u>	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	30-Jan-08 15:05
Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	30-Jan-08 15:05
Ethylbenzene	BQL	1.00	UG/L	1	30-Jan-08 15:05
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	30-Jan-08 15:05
Toluene	BQL	1.00	UG/L	1	30-Jan-08 15:05
m/p-Xylene	BQL	2.00	UG/L	1	30-Jan-08 15:05
o-Xylene	BQL	2.00	UG/L	1	30-Jan-08 15:05
Surrogates					
Trifluorotoluene	98.3	85-115	%	1	30-Jan-08 15:05

Batch Information

Analytical Batch: 1013008 Analytical Method: 602 Instrument: GC1 Analyst: RSB

Client Sample ID: **MW-1D**Client Project ID: 042-07-117
Lab Sample ID: G118-507-8D
Lab Project ID: G118-507

Print Date: 2/5/2008

<u>DF</u>

500

Collection Date: 24-Jan-08 0:00

Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 1000
 150

<u>Units</u> MG/L Date Analyzed 31-Jan-08 12:14

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0

Instrument; IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 12:14

Client Sample ID: **Stream Mid** Client Project ID: 042-07-117 Lab Sample ID: G118-507-9A Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 9:20 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

	<u>PARAMETER</u>	<u>Result</u>	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
	Benzene	BQL	1.00	UG/L	1	01-Feb-08 17:08
	Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	01-Feb-08 17:08
	Ethylbenzene	BQL	1.00	UG/L	1	01-Feb-08 17:08
	Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	01-Feb-08 17:08
	Toluene	BQL	1.00	UG/L	1	01-Feb-08 17:08
	m/p-Xylene	BQL	2.00	UG/L	1	01-Feb-08 17:08
	o-Xylene	BQL	2.00	UG/L	1	01-Feb-08 17:08
Sı	ırrogates					
	Trifluorotoluene	95	85-115	%	1	01-Feb-08 17:08

Batch Information

Analytical Batch: 3020108 Analytical Method: 602 Instrument: GC3 Analyst: RSB Prep Batch: Prep Method: 5030 Prep Date/Time:

Client Sample ID: **Stream Mid** Client Project ID: 042-07-117 Lab Sample ID: G118-507-9D Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 128
 30.0

<u>Units</u> <u>DF</u> MG/L 100 Date Analyzed 31-Jan-08 12:50

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 12:50

Client Sample ID: Stream Down Client Project ID: 042-07-117 Lab Sample ID: G118-507-10A Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 9:25 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

Benzene BQL 1.00 UG/L 1 31-Jan-08 12:45 Diisopropyl ether (DIPE) BQL 1.00 UG/L 1 31-Jan-08 12:45 Ethylbenzene BQL 1.00 UG/L 1 31-Jan-08 12:45 Methyl-tert butyl ether (MTBE) BQL 2.00 UG/L 1 31-Jan-08 12:45 Toluene BQL 1.00 UG/L 1 31-Jan-08 12:45 m/p-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 o-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 Surrogates Trifluorotoluene 99.1 85-115 % 1 31-Jan-08 12:45		<u>PARAMETER</u>	Result	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Ethylbenzene BQL 1.00 UG/L 1 31-Jan-08 12:45 Methyl-tert butyl ether (MTBE) BQL 2.00 UG/L 1 31-Jan-08 12:45 Toluene BQL 1.00 UG/L 1 31-Jan-08 12:45 m/p-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 o-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45		Benzene	BQL	1.00	UG/L	1	31-Jan-08 12:45
Methyl-tert butyl ether (MTBE) BQL 2.00 UG/L 1 31-Jan-08 12:45 Toluene BQL 1.00 UG/L 1 31-Jan-08 12:45 m/p-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 o-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 Surrogates		Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	31-Jan-08 12:45
Toluene BQL 1.00 UG/L 1 31-Jan-08 12:45 m/p-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 o-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 Surrogates		Ethylbenzene	BQL	1.00	UG/L	1	31-Jan-08 12:45
m/p-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 o-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 Surrogates		Methyl-tert butyl ether (MTBE)	BQL.	2.00	UG/L	1	31-Jan-08 12:45
o-Xylene BQL 2.00 UG/L 1 31-Jan-08 12:45 Surrogates		Toluene	BQL	1.00	UG/L	1	31-Jan-08 12:45
Surrogates		m/p-Xylene	BQL	2.00	UG/L	1	31-Jan-08 12:45
		o-Xylene	BQL	2.00	UG/L	1	31-Jan-08 12:45
Trifluorotoluene 99.1 85-115 % 1 31-Jan-08 12:45	Su	rrogates					
		Trifluorotoluene	99.1	85-115	%	1	31-Jan-08 12:45

Batch Information

Analytical Batch: 1013108 Analytical Method: 602 Instrument: GC1 Analyst: RSB

Client Sample ID: Stream Down Client Project ID: 042-07-117 Lab Sample ID: G118-507-10D Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 150
 30.0

 Units
 DF
 Date Analyzed

 MG/L
 100
 31-Jan-08 13:02

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0 Instrument: IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 13:02

Client Sample ID: Beal Client Project ID: 042-07-117 Lab Sample ID: G118-507-11A Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 13:35

Received Date: 26-Jan-08

Matrix: WATER

Results by 602

PARAMETER	Result	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	31-Jan-08 13:18
Diisopropyl ether (DIPE)	2.46	1.00	UG/L	1	31-Jan-08 13:18
Ethylbenzene	BQL	1.00	UG/L	1	31-Jan-08 13:18
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	31-Jan-08 13:18
Toluene	BQL	1.00	UG/L	1	31-Jan-08 13:18
m/p-Xylene	BQL	2.00	UG/L	1	31-Jan-08 13:18
o-Xylene	BQL	2.00	UG/L	1	31-Jan-08 13:18
Surrogates					
Trifluorotoluene	99.5	85-115	%	1	31-Jan-08 13:18

Batch Information

Analytical Batch: 1013108 Analytical Method: 602 Instrument: GC1 Analyst: RSB

Client Sample ID: Beal Client Project ID: 042-07-117 Lab Sample ID: G118-507-11D Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

DΕ Date Analyzed <u>Units</u> RL/CL **PARAMETER** Result MG/L 100 31-Jan-08 13:14 30.0 Chloride 181

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0 Instrument: IC1

Analyst: PSW

Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 13:14 Initial Prep Wt./Vol.:

Prep Extract Vol:

Client Sample ID: **Norman**Client Project ID: 042-07-117
Lab Sample ID: G118-507-12A

Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 13:30

Received Date: 26-Jan-08

Matrix: WATER

Results by 602

PARAMETER	<u>Result</u>	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	31-Jan-08 13:51
Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	31-Jan-08 13:51
Ethylbenzene	BQL	1.00	UG/L	1	31-Jan-08 13:51
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	31-Jan-08 13:51
Toluene	BQL	1.00	UG/L	1	31-Jan-08 13:51
m/p-Xylene	BQL	2.00	UG/L	1	31-Jan-08 13:51
o-Xylene	BQL	2.00	UG/L	1	31-Jan-08 13:51
Surrogates					
Trifluorotoluene	99.4	85-115	%	1	31-Jan-08 13:51

Batch Information

Analytical Batch: 1013108 Analytical Method: 602 Instrument: GC1 Analyst: RSB

Client Sample ID: **Norman** Client Project ID: 042-07-117 Lab Sample ID: G118-507-12D Lab Project ID: G118-507 Print Date: 2/5/2008

Date Analyzed

30-Jan-08 14:50

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL
 Units
 DF

 Chloride
 5.93
 0.300
 MG/L
 1

Batch Information

Analytical Batch: 013008 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013008 Prep Method: 300.0

Prep Date/Time: 30-Jan-08 14:50

Client Sample ID: Gibson Client Project ID: 042-07-117 Lab Sample ID: G118-507-13A Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 13:20 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

<u>PARAMETER</u>	Result	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	31-Jan-08 14:24
Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	31-Jan-08 14:24
Ethylbenzene	BQL	1.00	UG/L	1	31-Jan-08 14:24
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	31-Jan-08 14:24
Toluene	BQL	1.00	UG/L	1	31-Jan-08 14:24
m/p-Xylene	BQL.	2.00	UG/L	1	31-Jan-08 14:24
o-Xylene	BQL	2.00	UG/L	1	31-Jan-08 14:24
Surrogates					
Trifluorotoluene	99.6	85-115	%	1	31-Jan-08 14:24

Batch Information

Analytical Batch: 1013108 Analytical Method: 602 Instrument: GC1 Analyst: RSB

Client Sample ID: Gibson Client Project ID: 042-07-117 Lab Sample ID: G118-507-13D Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 137
 30.0

<u>Units</u> MG/L <u>DF</u> 100 Date Analyzed 31-Jan-08 13:26

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 13:26

Client Sample ID: **Presnell**Client Project ID: 042-07-117
Lab Sample ID: G118-507-14A
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 13:20 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

<u>PARAMETER</u>	Result	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	31-Jan-08 14:56
Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	31-Jan-08 14:56
Ethylbenzene	BQL	1.00	UG/L	1	31-Jan-08 14:56
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	31-Jan-08 14:56
Toluene	BQL	1.00	UG/L	1	31-Jan-08 14:56
m/p-Xylene	BQL	2.00	UG/L	1	31-Jan-08 14:56
o-Xylene	BQL	2.00	UG/L	1	31-Jan-08 14:56
Surrogates					
Trifluorotoluene	99.4	85-115	%	1	31-Jan-08 14:56

Batch Information

Analytical Batch: 1013108 Analytical Method: 602 Instrument: GC1 Analyst: RSB

Client Sample ID: **Presnell**Client Project ID: 042-07-117
Lab Sample ID: G118-507-14D
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 80.8
 3.00

Units DF MG/L 10 Date Analyzed 30-Jan-08 15:15

Batch Information

Analytical Batch: 013008 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013008 Prep Method: 300.0

Prep Date/Time: 30-Jan-08 15:15

Client Sample ID: Jester Client Project ID: 042-07-117 Lab Sample ID: G118-507-15A Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 13:10 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

PARAMETER	Result	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed		
Benzene	BQL	1.00	UG/L	1	31-Jan-08 15:29		
Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	31-Jan-08 15:29		
Ethylbenzene	BQL	1.00	UG/L	1	31-Jan-08 15:29		
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	31-Jan-08 15:29		
Toluene	BQL	1.00	UG/L	1	31-Jan-08 15:29		
m/p-Xylene	BQL	2.00	UG/L	1	31-Jan-08 15:29		
o-Xylene	BQL	2.00	UG/L	1	31-Jan-08 15:29		
Surrogates							
Trifluorotoluene	98.2	85-115	%	1	31-Jan-08 15:29		

Batch Information

Analytical Batch: 1013108 Analytical Method: 602 Instrument: GC1 Analyst: RSB

Client Sample ID: Jester Client Project ID: 042-07-117 Lab Sample ID: G118-507-15D Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

PARAMETER Result RL/CL
Chloride 43.3 3.00

 Units
 DF
 Date Analyzed

 MG/L
 10
 30-Jan-08 15:27

Batch Information

Analytical Batch: 013008 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013008 Prep Method: 300.0

Prep Date/Time: 30-Jan-08 15:27

Client Sample ID: Hancock Pre Client Project ID: 042-07-117 Lab Sample ID: G118-507-16A Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 14:05 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

<u>PARAMETER</u>	Result	RL/CL	<u>Units</u>	<u>DE</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	01-Feb-08 13:47
Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	01-Feb-08 13:47
Ethylbenzene	BQL	1.00	UG/L	1	01-Feb-08 13:47
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	01-Feb-08 13:47
Toluene	BQL	1.00	UG/L	1	01-Feb-08 13:47
m/p-Xylene	BQL	2.00	UG/L	1	01-Feb-08 13:47
o-Xylene	BQL	2.00	UG/L	1	01-Feb-08 13:47
Surrogates					
Trifluorotoluene	95.1	85-115	%	1	01-Feb-08 13:47

Batch Information

Analytical Batch: 3020108 Analytical Method: 602 Instrument: GC3 Analyst: RSB Prep Batch:

Client Sample ID: Hancock Pre Client Project ID: 042-07-117 Lab Sample ID: G118-507-16D Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

 PARAMETER
 Result
 RL/CL
 Units
 DF
 Date Analyzed

 Chloride
 1000
 150
 MG/L
 500
 31-Jan-08 13:38

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 13:38

Client Sample ID: Hancock Post Client Project ID: 042-07-117 Lab Sample ID: G118-507-17A Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 13:50 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

<u>PARAMETER</u>	Result	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Benzene	BQL	1.00	UG/L	1	01-Feb-08 14:21
Dilsopropyl ether (DIPE)	BQL	1.00	UG/L	1	01-Feb-08 14:21
Ethylbenzene	BQL	1.00	UG/L	1	01-Feb-08 14:21
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	01-Feb-08 14:21
Toluene	BQL	1.00	UG/L	1	01-Feb-08 14:21
m/p-Xylene	BQL	2.00	UG/L	1	01-Feb-08 14:21
o-Xylene	BQL	2.00	UG/L	1	01-Feb-08 14:21
Surrogates					
Trifluorotoluene	95.7	85-115	%	1	01-Feb-08 14:21

Batch Information

Analytical Batch: 3020108 Analytical Method: 602 Instrument: GC3 Analyst: RSB

Prep Batch:

Client Sample ID: Hancock Post Client Project ID: 042-07-117 Lab Sample ID: G118-507-17D Lab Project ID: G118-507 Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

PARAMETER Result RL/CL Chloride 89.8 3.00

Units DF MG/L 10

Date Analyzed 30-Jan-08 16:15

Batch Information

Analytical Batch: 013008 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013008 Prep Method: 300.0

Prep Date/Time: 30-Jan-08 16:15

Client Sample ID: **Brown**Client Project ID: 042-07-117
Lab Sample ID: G118-507-18A
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 13:05 Received Date: 26-Jan-08

Matrix: WATER

Results by 602

	<u>PARAMETER</u>	<u>Result</u>	RL/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
	Benzene	BQL	1.00	UG/L	1	01-Feb-08 14:55
	Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	01-Feb-08 14:55
	Ethylbenzene	BQL	1.00	UG/L	1	01-Feb-08 14:55
	Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	01-Feb-08 14:55
	Toluene	BQL	1.00	UG/L	1	01-Feb-08 14:55
	m/p-Xylene	BQL	2.00	UG/L	1	01-Feb-08 14:55
	o-Xylene	BQL	2.00	UG/L	1	01-Feb-08 14:55
Sui	rogates					
	Trifluorotoluene	95.1	85-115	%	1	01-Feb-08 14:55

Batch Information

Analytical Batch: 3020108 Analytical Method: 602 Instrument: GC3 Analyst: RSB Prep Batch:

Client Sample ID: **Brown**Client Project ID: 042-07-117
Lab Sample ID: G118-507-18D
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

PARAMETER Chloride Result 212 RL/CL 30.0 <u>Units</u> MG/L <u>DF</u> 100

Date Analyzed 31-Jan-08 13:51

Batch Information

Analytical Batch: 013108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Prep Batch: 013108 Prep Method: 300.0

Prep Date/Time: 31-Jan-08 13:51

Client Sample ID: **ERW**Client Project ID: 042-07-117
Lab Sample ID: G118-507-19A
Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 13:45

Received Date: 26-Jan-08

Matrix: WATER

Results by 602

PARAMETER	<u>Result</u>	RL/CL	<u>Units</u>	DF	Date Analyzed
Benzene	BQL	1.00	UG/L	1	01-Feb-08 15:28
Diisopropyl ether (DIPE)	BQL	1.00	UG/L	1	01-Feb-08 15:28
Ethylbenzene	BQL	1.00	UG/L	1	01-Feb-08 15:28
Methyl-tert butyl ether (MTBE)	BQL	2.00	UG/L	1	01-Feb-08 15:28
Toluene	BQL	1.00	UG/L	1	01-Feb-08 15:28
m/p-Xylene	BQL	2.00	UG/L	1	01-Feb-08 15:28
o-Xylene	BQL	2.00	UG/L	1	01-Feb-08 15:28
Surrogates					
Trifluorotoluene	94.1	85-115	%	1	01-Feb-08 15:28

Batch Information

Analytical Batch: 3020108 Analytical Method: 602 Instrument: GC3 Analyst: RSB

Client Sample ID: ERW Client Project ID: 042-07-117 Lab Sample ID: G118-507-19D Lab Project ID: G118-507

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: WATER

Results by 300.0

PARAMETER Chloride

Result 75.6

RL/CL 3.00

<u>Units</u> MG/L <u>DF</u> 10 Date Analyzed 30-Jan-08 16:39

Batch Information

Analytical Batch: 013008 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW

Prep Batch: 013008

Prep Method: 300.0 Prep Date/Time: 30-Jan-08 16:39

Client Sample ID: **SS-1-1** Client Project ID: 042-07-117 Lab Sample ID: G118-507-20A Lab Project ID: G118-507

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 7.81
 0.364

Batch Information

Analytical Batch: 020108 Analytical Method: 300.0 Instrument: IC1

Analyst: PSW

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: SOIL Solids: 82.41 Basis: Dry

 Units
 DF
 Date Analyzed

 MG/KG
 1
 01-Feb-08 12:42

Prep Batch:

Prep Method: 300.0

Prep Date/Time: 01-Feb-08 12:42

Client Sample ID: SS-1-4 Client Project ID: 042-07-117 Lab Sample ID: G118-507-21A Lab Project ID: G118-507

Results by 300.0

Batch Information

PARAMETER Chloride

Result 105

RL/CL 3.59

Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00

Received Date: 26-Jan-08 Matrix: SOIL

Solids: 83.50 Basis: Dry

> <u>Units</u> MG/KG

<u>DF</u> 10

Date Analyzed 01-Feb-08 13:18

Analytical Batch: 020108

Analytical Method: 300.0 Instrument: IC1

Analyst: PSW

Prep Batch:

Prep Method: 300.0

Prep Date/Time: 01-Feb-08 13:18 Initial Prep Wt./Vol.: 100

Prep Extract Vol: 100

Client Sample ID: **SS-2-1** Client Project ID: 042-07-117 Lab Sample ID: G118-507-22A Lab Project ID: G118-507

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 52.7
 3.80

Batch Information

Analytical Batch: 020108 Analytical Method: 300.0 Instrument: IC1 Analyst: PSW Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: SOIL Solids: 78.96 Basis: Dry

 Units
 DF
 Date Analyzed

 MG/KG
 10
 01-Feb-08 14:31

Prep Batch:

Prep Method: 300.0

Prep Date/Time: 01-Feb-08 14:31

Client Sample ID: SS-2-4 Client Project ID: 042-07-117 Lab Sample ID: G118-507-23A Lab Project ID: G118-507

Results by 300.0

PARAMETER Result
Chloride 146

Batch Information

Analytical Batch: 020108 Analytical Method: 300.0 Instrument: IC1 Analyst: PSW Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: SOIL Solids: 75.64 Basis: Dry

 Units
 DF
 Date Analyzed

 MG/KG
 100
 01-Feb-08 11:05

Prep Batch:

RL/CL

39.7

Prep Method: 300.0

Prep Date/Time: 01-Feb-08 11:05

Client Sample ID: SS-3-1 Client Project ID: 042-07-117 Lab Sample ID: G118-507-24A Lab Project ID: G118-507

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 23.1
 3.53

Batch Information

Analytical Batch: 020108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: SOIL Solids: 84.89 Basis: Dry

 Units
 DF
 Date Analyzed

 MG/KG
 10
 01-Feb-08 13:43

Prep Batch:

Prep Method: 300.0

Prep Date/Time: 01-Feb-08 13:43

Client Sample ID: **SS-3-4**Client Project ID: 042-07-117
Lab Sample ID: G118-507-25A
Lab Project ID: G118-507

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 158
 37.1

Batch Information

Analytical Batch: 020108 Analytical Method: 300.0

Instrument: IC1 Analyst: PSW Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: SOIL Solids: 80.97 Basis: Dry

 Units
 DF
 Date Analyzed

 MG/KG
 100
 01-Feb-08 11:29

Prep Batch:

Prep Method: 300.0

Prep Date/Time: 01-Feb-08 11:29

Client Sample ID: SS-4-1 Client Project ID: 042-07-117 Lab Sample ID: G118-507-26A Lab Project ID: G118-507

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 6.94
 0.357

Batch Information

Analytical Batch: 020108 Analytical Method: 300.0 Instrument: IC1 Analyst: PSW Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: SOIL Solids: 84.01 Basis: Dry

 Units
 DF
 Date Analyzed

 MG/KG
 1
 01-Feb-08 13:55

Prep Batch:

Prep Method: 300.0

Prep Date/Time: 01-Feb-08 13:55 Initial Prep Wt./Vol.: 100

Prep Extract Vol: 100

Client Sample ID: **SS-4-4**Client Project ID: 042-07-117
Lab Sample ID: G118-507-27A
Lab Project ID: G118-507

Results by 300.0

 PARAMETER
 Result
 RL/CL

 Chloride
 429
 37.3

Batch Information

Analytical Batch: 020108 Analytical Method: 300.0 Instrument: IC1

Instrument: IC1 Analyst: PSW Print Date: 2/5/2008

Collection Date: 24-Jan-08 0:00 Received Date: 26-Jan-08

Matrix: SOIL Solids: 80.40 Basis: Dry

 Units
 DF
 Date Analyzed

 MG/KG
 100
 01-Feb-08 12:18

Prep Batch:

Prep Method: 300.0

Prep Date/Time: 01-Feb-08 12:18

CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.

Locations Nationwide

www.us.sgs.com

• Alaska

Hawaii

• Ohio

Maryland
 North Carolina

New JerseyWest Virginia

077947

(1) 	CLIENT:	igen Engineeri	19	- / 77 1 \ 1-1	4 - 0	<u> </u>	SGS R	eference):	C	-:([{ 	7-9	0	7			PA	GE		OF	2 3
-	CONTACT: K	an Greene		o:(336) 60	90 OU4	3	No	SAMPLE TYPE	Preservat Used	ives HO]-		1	T	Τ				T		
	PROJECT: 042-07-117 SITE/PWSID#								Analysis						-	-}-}-					
	REPORTS TO:	egreenel.	CON	C≔ COMP	l _	Required / / /					/ /	/ / / .									
L	San	FAX NO.:(33'v) (168	T		(3)	③/ / , / / / / /					′ /	/ / /								
I	INVOICE TO:	•	QUOTE#		A L	G= GRAB		Cherry Cherry						/	/ <i> </i> - /						
<u> </u>	7	gme_	P.O. NUM	BER	N E		/ 5		\$/				/ /		/ /						
Ĭ	LAB NO.	SAMPLE IDENTIFIC	ATION .	DATE	TIME	MATRIX	R S		/ %	13/		//					_		REM	ARKS	
		RW-L		1-24-08	1205	W	4		>	1											
		RW-2		tı	1415				√	√											
L	RW-3			h	1410				✓	√											
		RW-4		q	1340				V	√											
		RW-6		Ч	1155				1	1											
		RW-7		11	1155				√	1											
		MW-IS		4	1025				1	1											
		MW-ID		ft	0950				✓	1											
		Stram mid		ţr	0920				1	/											
Ţ	`	Stream Gown		Ħ	0975	V	V		\	/						·					
1	Collected/Reli	nquished By:(1)	Date	Time	Réceived F	War.	Date	Time	Shi	pping C	arrier:				Sam	ples Re	eceive	d Colds	(Circle)	YES	. 10
K	inighei		1-24-08	1700 C	Jack	This	Vastas Oszo		Shipping Ticket No:				Tem	mperature C:							
Ī	Relinquished	By: (2)	Date /	Time	Repeived E	34:	Date	Time	Spe	cial De	liverab	ie Requ	uireme	nts:	Cha	in of Cu	ustody	Seal: (Circle)		
	Reliviquished By: (3) Date			1800	Mu	t Mi	1/26	126 1358 INT.						INT/	ACT		BROK	EN	(A	BSENT)	
				Time Recoved By:			Date	Time	Special Instructions:												
I	Relinquished By: (4) Date			Time	Received E	Зу:	Date	Time		-		round	Time:					Z STI	``		
										RUS	SH _		Date	Needed	d		[A 211	נ		!

CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.

Locations Nationwide

- Alaska
- Hawaii
- Ohio
- Maryland
 North Carolina
- New Jersey
 West Virginia

www.us.sgs.com

077946

CLIENT: Traph Engineering	SGS Reference:								page							
CONTACT: Evin Greene PHONE			Preservatives Ha -													
PROJECT: 04Z-01-117 SITE/PW	SID#:	. <u></u> -		No	SAMPLE TYPE											
REPORTS TO: E-MAIL:	Egrence 4	CO		Analysis Required	/ /	/ /	/ /					/ /				
Same FAX NO.	3868		N	C= COMP	3/	/ /				/	/ /	/	/ /			
INVOICE TO: QUOTE		2000		Å	(JARA)		/_	\ \	/		/	/ /	/	/ /		
Same P.O. NUI	MBER	N		\\ \frac{\\ \chi_{1}}{\chi_{2}}		š/	/ ,	/ /	/ /	/ /						
LAB NO. SAMPLE IDENTIFICATION	DATE	TIME	MATRIX	E R S		\\\ ³	F3/8	/	/ /							
							$^{\prime}$	/-	-/-		-{-		_	/ REMARKS		
Beal	1-24-08		W	Ц		V	1	-	-							
Norman	"	1330		-		V	/				_ _		-			
Gibson	11	1320				. 🗸	V						ļ			
Presnell	11	1320				✓	1									
Jester	4	1310		 		✓	/						ļ			
Hancick Pre	Ч	1405		 -	ļ	\checkmark	/	_					ļ			
Honcock Post	11	1350			<u> </u>	<u> </u>	√						-			
Trown	ત	1305			ļ	~	√					_	_			
ERW	4	1345	V	V		√	1				-		ļ			
						4							<u> </u>			
Collected/Relinquished By:(1) Date	Time	Received	3y: 1	Date	te Time Shipping Carrier: Samples Received Cold? (Circle							ed Cold? (Circle) YES NO				
(saig Na) 1-2402	1200/	Schalleto.		1951B	OPE	Shipping Ticket No:				Te	Temperature JC:					
Relinquished By: (2) Date Time			3ý: /[Date	Time	Spe	cial Deli	iverable	Requir	ements	: C	hain of C	ustody	y Seal: (Circle)		
Jan Doly 1/25/18	1800	Y AAAA		11/24	115						11	INTACT BROKEN, ABSENT				
Relinquished By: (3) Date Time Received By: (1)					Time	<u> </u>										
Relinquished By: (4) Date	Time	Received I	Зу:	Date	Time		Requested Turnaround Time:							(
				□ RUSH												

CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.

Locations Nationwide

- Alaska
- Hawaii
- Ohio
 New Jersey
- Maryland
 North Carolina
- West Virginia

www.us.sgs.com

077945

4	CLIENT: Tranking Engineering							SGS Reference: 60857 PAGE 3 of 3									. Z			
	CONTACT: E	rin Greene	PHONE N	10:(33e)(di	B 0093	,		,			8 -	7	, , 	т			<u> </u>	····		
ı	PROJECT: 04		SITE/PW:	SID#:			Nο	SAMPLE TYPE	Preserva Used	lives										
ŀ	REPORTS TO:	00(11)	E-MAIL:	egreenele	Atrioner	Missi P	C O	`	Analysis Require	ı/	/	/	/	/	/	/	/			
ı	Samo	-		-	_	7 - '	N T	C= COMP	3)	/ /	' /	' /	′ /	/ /	/	/ /	/	/ /		
ı	INVOICE TO: FAX NO.:(334) USA 3568				******	À	G _E GRAP		\\\\ \\\\							/	/ /	,		
	saw	Ve	P.O. NUMBER				N E					/ / / /						/ /		
Ĭ	LAB NO.	SAMPLE IDENTIFIC	CATION	DATE	TIME	MATRIX	R S								_			REMAI	RKS	
L		55-1-1		1-24-08	410	Sol	1		1											
L		55-1-4			1120	1			√											
		55-2-1			1055				1											
		55-2-4			405				/											
_[55-3-1			1125				\checkmark											
		55-3-4			[130				V											
I		55-4-1			1135				J											
		55-4-4		V	1140	√	V		\											
L							<u> </u>													
(5	\					_														
Ť	Collected/Reli	quished By:(1)	Date	Time	Received E	# / /	Date	Time	Shipping Carrier: Sample				iples Re	Received Cold? (Circle) YES NO						
	Saigha	\	1-24.08	1700	Boll	Beh Starter		0530	Shipping Ticket No:					Tem	Temperature C: \\ \dagger 3 \\ \i					
I	Relinquished By: (2) Date Aach Olath 1/35			Time /	Feceived E	39 14	Date	Time	Spe	cial De	liverabl	e Req	uireme	nts:	Cha	in of C	ustody Seal: (Circle)			
ı				1800	Grant A		1/26	1198	INTACT BR				BROKEN	ABSENT						
	Relinquished By: (3) Date Time Received By				3y();	Date	Time													
						5-4-	e Time Requested Turnaround Time:													
	Relinquished B	y: (4)	Date	Time	Received E	sy:	Date	Time		•					•		ī	⊴ STD		
									▮ "	Date Needed										

TRIGON SERVICES

- GEOTECHNICAL ENGINEERING
- CONSTRUCTION MATERIALS ENGINEERING/TESTING
- SPECIAL INSPECTIONS
- FORENSIC ENGINEERING
- ENVIRONMENTAL DUE DILIGENCE/PHASE I AUDITS
- GEOTECHNICAL AND ENVIRONMENTAL DRILLING
- GROUNDWATER INVESTIGATIONS/REMEDIATION
- SITE CIVIL DESIGN ENGINEERING
- LAND PLANNING/DEVELOPMENT ENGINEERING
- STREAM AND WETLAND DELINEATION/PERMITTING
- WATER RESOURCE ENGINEERING
- WATER AND WASTEWATER ENGINEERING
- STORMWATER MANAGEMENT/PERMITTING/SPCC
- TANK INTEGRITY TESTING
- HEALTH AND SAFETY CONSULTING
- REGULATORY COMPLIANCE ENGINEERING/STRATEGIES
- WASTE MINIMIZATION STUDIES
- AIR QUALITY CONSULTING
- ATMOSPHERIC DISPERSION MODELING
- SOURCE TESTING AND CONTINUOUS EMISSIONS MONITORING
- INDOOR AIR QUALITY/INDUSTRIAL HYGIENE
- ASBESTOS AND LEAD-BASED PAINT INSPECTIONS

OFFICE LOCATIONS

Greensboro	Charlotte	Raleigh	Raleigh	Wilmington
North Carolina	North Carolina	North Carolina	North Carolina	North Carolina
336.668.0093	704.598.1049	Design and Construction	Environmental	910.256.9300
		919.755.5011	919.861.7775	